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Abstract. Modern DRAM is susceptible to fault attacks that under-
mine the entire system’s security. The most well-studied disturbance ef-
fect is Rowhammer, where an attacker repeatedly opens and closes (i.e.,
hammers) different rows, which can lead to bitflips in adjacent rows. Dif-
ferent hammering strategies include double-sided, hammering two rows
sandwiching a victim row, and one-location, hammering a single row.
One-location Rowhammer requires no physical address information, as
any location in memory is mapped to a DRAM row, and no relation be-
tween rows is required for hammering. The recently discovered Rowpress
differs from Rowhammer by not hammering rows but keeping them open
longer, evident by a disjoint set of affected memory locations.
In this paper, we examine the differences between four attack variants:
one-location Rowhammer, a one-location Rowpress variant we developed,
double-sided Rowhammer, and double-sided Rowpress on a set of 12
DDR4 modules. Our methodology is to hammer and press the exact
same set of physical memory locations in all attack variants. Surpris-
ingly, our results show that on 4 out of 12 DDR4 modules, we were only
able to reproduce double-sided Rowhammer but none of the other attack
variants. On 2 DDR4 modules, we were able to reproduce all attack vari-
ants. We find that the number of unique bitflip locations ranges from 161
to 15 612, when hammering the exact same set of physical memory lo-
cations. Our one-location Rowhammer attack induces roughly the same
amount of bitflips as double-sided Rowhammer, however, only 61.8 %
of bitflip locations overlap. We explain this by one-location Rowham-
mer inducing bitflips due to the Rowhammer as well as the Rowpress
effect, making the differentiation of both methods difficult, therefore,
calling it Presshammer. Based on our observed bitflips, we develop the
first end-to-end one-location Rowpress attack. One-location Rowpress
requires only minimal physical address information that an attacker can
acquire through a same-row same-bank side-channel attack. Our end-to-
end attack escalates to kernel privileges within less than 10 minutes.
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Fig. 1: Claims and observations from different papers. The equal sign indicates
that these variants exploit the same root cause, and the unequal sign indicates
that these variants have a different root cause. The reference indicates which
work this claim is based on.

1 Introduction

A fundamental assumption for secure software systems is the correctness of the
underlying hardware. A long line of work has shown that physical glitching could
violate this assumption. However, for a long time [2], it was not clear whether it
could also be violated in scenarios without a physical attacker. The discovery of
Rowhammer as a security issue in 2014 [21] showed that this assumption can be
fatally flawed. Rowhammer is a disturbance effect in the DRAM, leading to data
corruption that can undermine the entire system’s security. To trigger the Row-
hammer effect, an attacker repeatedly opens and closes (i.e., hammers) different
rows, leading to row activation operations in the DRAM [21]. Different Row-
hammer strategies have been discovered, such as single-sided hammering [21],
double-sided decoys [9, 17] which all open and close different rows in the same
bank, triggering row activations. One-location Rowhammer [10] works slightly
differently, as it does not activate multiple rows but instead performs frequent
accesses to one single row. This approach has the advantage of not requiring
physical address information, as any location in memory maps to a DRAM row,
and no relation between rows is required for hammering.

Recently Luo et al. [26] discovered an effect in DDR4, called Rowpress. Row-
press, instead of accessing a single location in a row and then another one in a
different row, accesses a larger number of offsets in one row before switching to
another row. The goal of this access pattern is to keep the row open as long as
possible, as this can induce bitflips due to RAS clobber, i.e., the passing gate
effect [12, 15, 52]. Luo et al. [26] report that Rowpress and Rowhammer bitflips
belong to largely disjoint sets of memory locations. Rowpress uses physical ad-
dress information to identify the rows and the offsets within the rows to target.

Comparing the open-source implementations of Rowpress [26] and one-location
Rowhammer [10], it is interesting to see that both implementations main-algo1



and main-algo2 by Luo et al. indeed hammer two rows3, albeit multiple offsets
within a row, in a Flush+Reload [21] loop, whereas Gruss et al. only run a
Flush+Reload loop on a single address. Hence, following the definition of Row-
press, the attack loop by Gruss et al. should, similarly, actually press a row and
not hammer it. However, it is not clear whether the one-location hammering and
Rowpress implementations on CPUs, exploit the same or different physical root
causes: Gruss et al. [10] reported a difference in bitflip rates between single-sided,
double-sided and one-location hammering but no significant difference in bitflip
locations, indicating that they all exploit the same root cause. Combining these
reports leads to a contradiction, as illustrated in Figure 1. Thus, the relation
between the different Rowhammer and Rowpress variants remains unclear.

In this paper, we examine the different Rowhammer and Rowpress variants
and find that these effects are not easy to separate. We run Rowhammer and
Rowpress tests on 12 DDR4 modules to assess the prevalence of Rowhammer
and Rowpress effects on current systems. We find that double-sided Rowhammer
works on only 6 out of 12 DDR4 modules. We implement a one-location Row-
press variant, which strictly presses only a single row in contrast to published
proof of concepts. However, we find that Rowhammer and Rowpress variants
other than double-sided Rowhammer only work on two DDR4 modules in our
setup, both with the published proof of concept (PoC) as well as our own imple-
mentations. Both results pose a significant difference from the numbers reported
by Jattke et al. [17] and Luo et al. [26].

We compare the four attack variants on all DDR4 modules with bitflips in any
of the attacks. We hammer and press the exact physical memory locations on the
same system in all attack variants by using a setup with fixed memory mappings
so that physical addresses remain identical across different Rowhammer and
Rowpress tools and runs. The number of unique bitflip locations ranges from 161
to 15 612 on the affected modules when hammering the exact same set of physical
memory locations. Our one-location Rowhammer attack induces roughly the
same amount of bitflips (14 264) as double-sided Rowhammer (15 612), however,
only 61.8 % of bitflip locations overlap. This could be explained by the one-
location Rowhammer pattern inducing bitflips due to the Rowhammer as well
as the Rowpress effect, making it actually a Presshammer attack. We did observe
significantly less bitflips with the original Rowpress pattern by Luo et al. [26]
that accesses multiple offsets per row than with one-location Rowhammer, even
though both keep a row open for a prolonged time.

Based on our observed Presshammer bitflips, we develop a novel one-location
Presshammer approach, which requires almost no physical address information
and show that an attacker can mount an end-to-end attack by using the same-
bank same-row side channel. We demonstrate that our one-location Pressham-
mer attack is practical by obtaining kernel privileges through a page-table cor-
ruption attack [44]. The attack runtime with one-location Presshammer is less
than 10 minutes on average.

3 https://github.com/CMU-SAFARI/RowPress/blob/main/demonstration/main-
algo1.cpp#L143



In summary, we make the following contributions in this work:

1. We systematically compare one-location and double-sided Rowhammer and
Rowpress.

2. We study the prevalence of both effects across 12 DDR4 modules and find
that 6 of these modules are affected by double-sided Rowhammer, but only
2 by all attack variants, with double-sided Rowhammer flipping the most
locations and one-location Rowpress the fewest.

3. We show that our one-location Rowhammer pattern flip bits at locations only
partly overlapping with the locations flipped by double-sided Rowhammer.
61.8 % of bitflip locations flipped by one-location Rowhammer also flipped
with double-sided Rowhammer, while flipping roughly the same number of
bits overall, 14 264 and 15 612 respectively.

4. We present the first one-location Rowpress end-to-end attack, reliably esca-
lating to kernel privileges within less than 10 minutes of attack time.

Outline. Section 2 provides background on DRAM, Rowhammer, and Row-
press. Section 3 presents a systematic comparison between Rowhammer and
Rowpress, including our prevalence study. Section 4 shows how one-location
Rowpress can be mounted without physical address information. Section 5 presents
a PoC attack on page tables, allowing an attacker to escalate to kernel privileges.
We discuss mitigations in Section 6 before concluding in Section 7.

2 Background

This section provides background on DRAM, Rowhammer, and Rowpress.

2.1 DRAM

DRAM is the main memory used in modern computers. DRAM capacities have
increased substantially with shrinking process sizes from a few kilobytes in the
1990s to multiple gigabytes in personal computers and even terabytes in larger
server systems today. The DRAM has a very high latency compared to the pro-
cessor, and a single DRAM chip also has a limited bandwidth. Consequently,
modern DRAM has a significant amount of parallelism to improve the band-
width, positively influencing the average latency. DDR4 has 16 DRAM banks
that operate in parallel, combined in a rank. There are single- and dual-rank
DDR4 modules. Finally, the DRAM modules are connected to the processor via
so-called channels. Today, dual-channel is the most widely used configuration in
personal computers. Server CPUs typically have four or eight channels. Banks
are divided into rows of cells, i.e., the transistors and capacitors storing the data.
As DRAM cell charges deplete over time, frequent refreshes are required to pre-
vent data loss [18]. Typically, each cell is refreshed every 64 ms. Rowhammer
mitigations like TRR can trigger additional row refreshes if they detect Row-
hammer attacks. To access data, the memory controller has to activate the row,
which moves the data from the row into the row buffer from where it can be
read and written.



2.2 Rowhammer

In 2014, Kim et al. [21] discovered the Rowhammer effect. An attacker can in-
duce bitflips in the DRAM from software through disturbance errors triggered
by frequent row activations. Rowhammer attacks have been demonstrated in
sandboxed environments [44, 34], in native environments [44, 10, 45], in virtual
machines [53, 37, 16], in JavaScript [11, 3, 38], on mobile devices [48, 8, 23], over
the network [46, 25], to influence or steal neural networks [55, 47, 36], and to
steal cryptographic keys [24, 28, 7]. Rowhammer is getting worse with every new
DRAM generation and increasing density. LPDDR4 requires less than a 10th of
the activations than DDR3 memory to hammer [30, 20].

The Rowhammer effect induces a bitflip by discharging the capacitor in a
neighboring cell. Once a cell has lost sufficient charge, the value read during the
next load will no longer be the original value [21, 24, 50]. A a correlation exists
between the data in the aggressor rows and the resultant bitflips; typically, the
victim row adopts the values of the aggressor row.

There are different variants of Rowhammer: double-sided Rowhammer [44],
single-sided Rowhammer [21], one-location Rowhammer [10] and half-double
Rowhammer [23]. Double-sided Rowhammer uses two rows called aggressors
in the same DRAM bank, which sandwich another row in between, inducing
more bitflips than single-sided Rowhammer. Half-double Rowhammer hammers
one row further apart than double-sided Rowhammer and is dependent on the
additional refreshes performed by the TRR mitigation to induce bitflips.

Gruss et al. [10] introduced one-location Rowhammer intending to defeat the
mitigations published at the time. The significant difference from the other Row-
hammer variants is that one-location hammering only accesses a single location
in the DRAM, which should not cause row conflicts. Instead, the aggressor is
kept open through repeated accesses to the exact location until it gets closed
by the memory controller. When the row is closed, one-location Rowhammer
reopens the row immediately. Gruss et al. [10] hypothesized that this reopening
might be the underlying trigger to the disturbance effect they discovered.
Rowpress. Rowpress was discovered by Luo et al. [26]. While it is similar
to Rowhammer, it induces bitflips in rows through continuous and sustained
activation of the same rows. Luo et al. [26] verified that bitflips are induced by
holding the rows open for a long time using a specialized FPGA platform. As the
memory controller of a CPU would normally instead close the row soon after the
memory access, Luo et al. [26] use a unique access pattern with different offsets in
the same row. This causes the memory controller to delay precharge commands
up to a maximum of 9×tREF I . In a Rowpress attack, the attacker chooses offsets
and repetitions such that the 9× tREF I delay is approached. Luo et al. [26] find
that the Rowpress read disturbance phenomenon is widespread across numerous
DRAM modules and manufacturers. Their paper also analyzed and compared
the flipped bits caused by Rowpress and the ones caused by Rowhammer. Their
data shows that the flipped bits differ for both attacks; therefore, Luo et al.
[26] conclude that Rowpress is caused by another effect than Rowhammer. This
effect is either called RAS clobber [15, 52] or the passing gate effect [12].
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Fig. 3: Overview of the tested variants. Rowhammer attacks access only a single
offset per DRAM row. Typically, this is offset 0. Rowpress accesses multiple
offsets per DRAM row to keep the row open longer. The double-sided variants
access two rows with the victim sandwiched between, however, with a lot lower
frequency than double-sided Rowhammer. The one-location variants access only
a single row, not explicitly causing bank conflicts.

3 Systematic Comparison of Rowhammer and Rowpress

The key difference separating one-location hammering from other Rowhammer
methods is that it does not provoke bank conflicts with other rows in the same
DRAM bank, i.e., it is hammering only one location [10]. Similarly, Rowpress also
works by keeping a row open as long as possible. With double-sided Rowpress, the
open row is switched after some time, causing row conflicts but less than double-
sided Rowhammer. One-location Rowpress keeps, like one-location Rowhammer,
one row open. Figure 3 visualizes these similarities and differences.

Luo et al. [26] reported that different cells are affected by Rowpress than Row-
hammer, hinting at another underlying cause. Rowpress exploits the passing gate
effect [12] not the Rowhammer effect. Comparing the cells flipped by Rowpress,
double- and one-location Rowhammer shows a less clear picture. While one-



location Rowhammer and double-sided Rowhammer flip roughly the same num-
ber of bits, the flip locations only overlap by 61.8 %. This hints that one-location
Rowhammer can induce bitflip with both effects, Rowhammer and Rowpress.

While the Rowpress paper suggested that one-location Rowpress is possible,
it is essential to note that the published Rowpress PoC only contains the double-
sided Rowpress variant [26]. Therefore, we used the double-sided Rowpress PoC
to develop a one-location Rowpress PoC which presses in only one single location.

3.1 Differences Between One-Location Rowhammer and Rowpress

There are multiple differences between the shown one-location Rowhammer by
Gruss et al. [10] and Rowpress by Luo et al. [26]. Listings 1.1, 1.2, 1.3, and 1.4
show pseudo-codes of the different Rowhammer and Rowpress methods.
Number of Accessed Rows. One-location Rowhammer accesses only a single
row in one DRAM bank. While Luo et al. [26] mention Rowpress with a single row
“one-location Rowpress”, their PoC code performs only double-sided Rowpress.
We modify this double-sided Rowpress code to support one-location pressing.
Number of Cache Block Reads. One-location Rowhammer accesses only
one cache block in a row repeatedly. Typically, it is the first offset in the row.
Rowpress accesses multiple cache blocks in a row.
TRR Evasion. Gruss et al. [10] did not actively evade TRR in their one-
location implementation. Luo et al. [26] employ a simple TRR evasion similar to
TRRespass [9]. They synchronize their hammer loop to REF and access dummy
rows on the same bank to decrease the chance that TRR tracks the correct
aggressor rows. However, as we show in Section 3.6, we were not able to reproduce
Rowpress with this simple TRR evasion method.

3.2 Comparison Methodology

The goal is to record the exact cells that flip when hammering or pressing the
same physical range in memory. We run the following four Rowhammer and
Rowpress methods to find out whether the same or different cells flip with these
methods: one-location Rowhammer (OL RH), single-sided Rowpress from now
on called one-location Rowpress (OL RP), double-sided Rowhammer (DS RH),
double-sided Rowpress (DS RH).

To be able to compare the flipped cells we have to ensure that we always
hammer the exact same physical memory range. We use a 1 GiB huge page
configured with Linux kernel command-line parameters. From this huge page we
use the first 100 MiB region for all our tests. We used multiple CPUs to hammer
and press all our DIMMs: Intel Core i7-6700K, Intel Core i9-9900K, Intel Core
i9-10900K. Our study comprises 12 different DRAM DIMMs without ECC. Like
Luo et al. [26] we disabled the cache prefetcher for all experiments.

Our goal is not to find the best hammer method in terms of row accesses or
time passed for the attack. We want to find all cells flippable with each method
to be able to measure the overlap between methods as an indication of how



separated the effects are that they trigger. Therefore, we hammer our 100 MiB
region multiple times with enough accesses per hammer loop to ensure we found
the bulk of all flippable cells for each method. For each bitflip, we store the
physical address, exact bit location, and data before and after the flip.

To find out whether one-location Rowpress flips different bits than one-
location Rowhammer, we run the latter with every page offset that we also
use for one-location Rowpress. We verify that the hammered offset within a row
accessed does not influence the flips in the neighboring victim rows.

3.3 One-Location Rowhammer

1 for (iter = 0 ; iter < NUM_ITER ; iter ++):
2 for (i = 0 ; i < NUM_AGGR_ACTS ; i++):
3 // access a single cache block of the aggressor row
4 // to keep the aggressor row open longer
5 for (j = 0 ; j < NUM_READS ; j++):
6 * AGGRESSOR [x];
7 clflushopt ( AGGRESSOR [x]);

Listing 1.1: One-location Rowhammer code.

One-location Rowhammer repeatedly accesses one offset x in a single row. Vary-
ing this offset does not influence the flipped bits. We were only able to reproduce
one-location Rowhammer on two identical DIMMs. They are two DDR4 modules
with with an early TRR implementation.

3.4 Rowpress

We use the improved Rowpress algorithm published in the extended version [27]
of Rowpress [26] in Appendix G. It interleaves the aggressor accesses and flushes.
Luo et al. [27] measured four times as many induced bitflips than with the
original version that first accessed all aggressors and then flushed all of them.
1 for (iter = 0 ; iter < NUM_ITER ; iter ++):
2 for (i = 0 ; i < NUM_AGGR_ACTS ; i++):
3 // access multiple cache blocks of the aggressor row
4 // to keep the aggressor row open longer
5 for (j = 0 ; j < NUM_READS ; j++):
6 * AGGRESSOR [j];
7 clflushopt ( AGGRESSOR [j]);

Listing 1.2: The one-location Rowpress code used for this evaluation

One-location Rowpress accesses only offsets within a single row, as shown in List-
ing 1.2 and Figure 4. We were only able to reproduce one-location Rowpress on
two identical DIMMs, the same where we reproduced one-location Rowhammer.
1 for (iter = 0 ; iter < NUM_ITER ; iter ++):
2 sync_with_ref ();
3
4 for (i = 0 ; i < NUM_AGGR_ACTS ; i++):
5 // access multiple cache blocks in each aggressor row
6 // to keep the aggressor row open longer
7 for (j = 0 ; j < NUM_READS ; j++):



Row n

Row n + 1
Victim

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
Victim

Row n + 5
Row n + 6

Aggressor row

Fig. 4: Abstract representation of one-location Rowpress. We activate addresses
a0 to a15 repeatedly to induce bitflips without provoking row conflicts.

8 * AGGRESSOR1 [j];
9 clflushopt ( AGGRESSOR1 [j]);

10 for (j = 0 ; j < NUM_READS ; j++):
11 * AGGRESSOR2 [j];
12 clflushopt ( AGGRESSOR2 [j]);
13
14 perform_dummy_row_accesses ();

Listing 1.3: The double-sided Rowpress code used for this evaluation

The double-sided Rowpress code accesses offsets in two rows in the same bank.
The code by Luo et al. [26] performs simple TRR evasion. They are syncing the
row accesses to REF and access some dummy rows after the main row accesses,
as shown in Listing 1.3. We found that this evasion is not enough for all but the
same two DIMMs where we were able to reproduce the one-location methods.

3.5 Double-Sided Rowhammer

1 for (iter = 0 ; iter < NUM_ITER ; iter ++):
2 for (i = 0 ; i < NUM_AGGR_ACTS ; i++):
3 // frequently open and close each aggressor row
4 for (j = 0 ; j < NUM_READS ; j++):
5 * AGGRESSOR1 [0];
6 * AGGRESSOR2 [0];
7 clflushopt ( AGGRESSOR1 [0]);
8 clflushopt ( AGGRESSOR2 [0]);

Listing 1.4: The double-sided Rowhammer code used for this evaluation

To hammer DRAM with the double-sided pattern, we used Blacksmith by Jat-
tke et al. [17]. Blacksmith is the most sophisticated TRR evasion method to
date. With Blacksmith we successfully hammered 6 of our 12 tested DIMMs.

3.6 Results

Table 1 shows an overview of all tested DIMMs and the successful hammer and
press methods. We were only able to induce bitflips with Rowpress patterns
on two of our tested DIMMs, D1 and D2. On DIMMs D3, D4, D6, and D9,
Blacksmith [17] found double-sided Rowhammer patterns that induced bitflips.
We did not try the one-location variants of Rowhammer and Rowpress if we did
not achieve bitflips with both double-sided variants.



Table 1: The table shows whether a Rowhammer or Rowpress method was able
to cause bitflips in any of our tested DIMMs. We indicate success with (✓), not
causing bitflips with(✗) or not tested with (∼). We did not test the one-location
(OL) variants if double-sided Rowpress (DL RP) was unsuccessful.
* On D3 to D12, we used Blacksmith to hammer double-sided with TRR evasion.

DIMM Size MT/s Double Sided One Location
RH* RP RH RP

D
D

R
4

D1 8 GB 2133 ✓ ✓ ✓ ✓

D2 8 GB 2133 ✓ ✓ ✓ ✓

D3 8 GB 2400 ✓ ✗ ∼ ∼

D4 8 GB 2400 ✓ ✗ ∼ ∼

D5 8 GB 2133 ✗ ✗ ∼ ∼

D6 8 GB 2666 ✓ ✗ ∼ ∼

D7 8 GB 2666 ✗ ✗ ∼ ∼

D8 8 GB 2666 ✗ ✗ ∼ ∼

D9 8 GB 2666 ✓ ✗ ∼ ∼

D10 8 GB 2666 ✗ ✗ ∼ ∼

D11 8 GB 3000 ✗ ✗ ∼ ∼

D12 8 GB 2133 ✗ ✗ ∼ ∼

Our theory on why we only saw bitflips induced by the Rowpress pattern on
2 DIMMs is that TRR on modern DDR4 DIMMs has evolved to be more difficult
to evade. Blacksmith can only do it by accessing a very large number of aggressor
rows. For example, the best pattern on D3 repeatedly accesses 60 different rows
during one refresh interval to evade TRR. However, as Rowpress tries to keep a
row open for a long time, fewer row activations are possible per refresh interval.
Luo et al. [26] caused Rowpress bitflips on a DIMM manufactured in 2018. Our
DIMMs D1 & D2 are of similar age. Whether a blacksmith-like TRR evasion
with Rowpress is possible on modern DDR4 memory, is up to future work.

Table 2 shows the detailed results of all DIMMs where we induced bitflips.
On D1, we hammered the same physical address space with all methods listed.
On D3, D4, D6, and D9, we used the best pattern found by Blacksmith.

On DIMM D1 and D2, we were able to flip bits with all tested methods.
Most importantly, we induced bitflips in the same physical address range with
all methods. This allows us to analyze precisely whether the tested Rowhammer
and Rowpress methods flipped bits in the same cells on this DIMM. We also
verified that the offset we access within a row does not influence the bitflips we
see when hammering. Figure 5 shows a confusion matrix of all bitflips caused
by Rowhammer and Rowpress. Because Rowpress with 8 accesses per row also
causes bitflips with 16 offsets, we use its numbers for this analysis.

Based on our results it remains inconclusive, whether one-location Rowham-
mer [10] is, in fact, Rowpress. We measure roughly the same amount of bit-
flips when hammering with a double-sided and one-location pattern. However,
only 61.8 % of bitflip locations found by one-location Rowhammer flipped also



Table 2: The number of bitflips per 100 MB of memory. RP-8 and RP-16 donate
Rowpress patterns with 8 and 16 cache line accesses per row.
* On D3 to D11, we used Blacksmith to hammer double-sided for TRR evasion.

DIMM Double Sided One Location
RH* RP-8 RP-16 RH RP-8 RP-16

D1 & D2 15 612 2174 4264 14 264 161 0
D3 13 656 0 0 0 0 0
D4 15 786 0 0 0 0 0
D6 157 0 0 0 0 0
D9 3040 0 0 0 0 0

RH
DS OL

RP
DS OL

RH
DS

OL

RP
DS

OL

100 56.5 13.7 1.0

61.8 100 14.5 1.1

98.1 95.3 100 1.0

96.3 98.8 81.4 100

Fig. 5: Detailed results of DIMM D1 & D2. Each number represents the fraction
in percent of exact bitflip locations of one method (y-axis) found in the other
method (x-axis). For example, 61.8 % of bitflip locations flipped by one-location
Rowhammer is also in the set of locations flipped by double-sided Rowhammer.

with double-sided Rowhammer. The comparison between double-sided and one-
location Rowpress also shows a reduction in the number of bitflips and a differ-
ence in bitflip locations. Comparing Rowpress and Rowhammer variants, we find
that virtually all Rowpress bitflip locations are in the sets of both Rowhammer
variants. However, this is likely also influenced by the smaller number of bit-
flips we found with all Rowpress variants. A possible explanation for our results
could be that one-location Rowhammer causes both effects simultaneously very
effectively, actually making it a Presshammer attack. It keeps a single row open,
inducing bitflips due to RAS clobber in some cells, while the opening and closing
of the row that is still happening is enough to induce bitflips in other cells.

4 Unprivileged One-Location Presshammer Attack

As our one-location Rowpress follows the same semantics as one-location Row-
hammer, we can similarly reduce the requirements. Most Rowhammer attacks
require at least partial knowledge of physical address bits above the page offset.
Therefore, the OS hides physical address information from user programs to re-
spond to these Rowhammer attacks [22]. While it is possible to reverse engineer
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Fig. 6: The offsets within a DRAM row are parts of different memory pages A to
D. Each part has the size of two cache lines, 128 bytes. This example is based on
the DRAM addressing functions of a Skylake CPU [33].

the full DRAM addressing functions [1, 33, 51] and additionally uncover row ad-
dressing and physical address bits [23, 24, 43, 45] using the bank conflict timing
side-channel, these methods can be tedious and take time.

For our one-location Presshammer attack, we only need the addresses of all
offsets that map to the same row in the same bank. Due to the DRAM addressing
functions, one page does not map to one row. On virtually all recent systems,
different logical pages are interleaved on one row, as shown in Figure 6, based
on the DRAM addressing functions [33], to increase memory throughput. Thus,
the missing parts of each page are simply mapped to other rows in other banks.
To perform a Rowpress attack, we must access multiple offsets within one row,
spread across various pages. Instead of using the physical address information
to find these offsets in the correct locations, we use the bank-conflict timing
side-channel in a reduced form.

Taking a random page A, we want to find the pages B to D that map to the
same row. Because we work on virtual memory and do not have any knowledge
about the underlying mapping to the physical memory, close and “far away”
pages based on the virtual address are not necessarily reflected in the physical
addresses. We increase this chance by allocating a large chunk of memory. After
filling single-page holes in the physical memory, the buddy allocator in Linux
typically returns chunks of physically contiguous memory [23]. This increases
the performance of our approach but is not strictly necessary.

Two assumptions for our algorithm hold on all current x86 systems:

A1 A DRAM row is 8 KiB (213 B) large.
A2 The physical address bits used for row addressing start high enough to have

a single page always in the same row across banks, i.e., a page is never in
two rows in the same bank.

The algorithm also works with 4 KiB rows with tiny modifications.
First, we have to find a page X that is in the same bank as A. Whether page

A and X are in the same bank is easily detectable with the bank-conflict timing
side channel. To not interfere with the following search for pages B to D, we start
the search for page X a few hundred virtual pages away from page A. We denote
current bank-conflict candidate page as S. We repeatedly flush and reload A[0]
and S[0] while measuring the timing to detect a bank conflict. With page A and
X, finding pages B to D is based on two requirements, also shown in Figure 7:
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Fig. 7: Visualization of the two requirements to find page offsets in the same
row. F[1] does not have a bank conflict with X[0], violating R1. G[1] does
have a bank conflict with X[0] but also with A[0], violating R2. B fulfills both
requirements.

R1 Because B to D must be in the same row as page A, they must be in the same
bank as X. We search for pages that have a bank conflict (same bank, but a
different row) with page X.

R2 Because B to D are in the same row as page A, there must not be a bank
conflict between B to D and A.

We iterate over chunks of 64 B to find B to D, starting with an offset of 64. We
check R1 by flushing and reloading S[offset] and X[0]. We try pages above
and below A until we find the page conflicting with X. Then, we check R2 by
flushing and reloading S[offset] and A[0]. If there is no conflict, we found the
page mapped to the first offset. We repeat these steps until all offsets are filled.
If we found B to D once, checking the following offsets is quick because we no
longer have to search for new pages. During the search, we also mark already
“used” offsets to speed up the search the more rows we already found.

Because we exclusively work with virtual memory, there is a chance that any
of the required pages to fill a row is not mapped in our address space. However,
as shown by Luo et al. [26], Rowpress does not need all offsets to press efficiently,
and the offsets we find are sufficient to mount Rowpress. However, the rate of
bitflips will be reduced as we do not control the data for the entire row, which
is known to influence the number of bitflips [5, 24].

5 Proof-of-Concept Presshammer Attack on Page Tables

Luo et al. [26] did not present an end-to-end Rowpress exploit, as their focus was
on the scientific evaluation of the effect, not the security impact. Consequently,
they did not discuss a threat or attacker model and simply used 1 GiB huge
pages to demonstrate the effect on real systems. We bridge this gap by showing
that Rowpress can be used to attack a system without using 1 GiB or 2 MiB
huge pages to get additional physical address information or any knowledge of
the DRAM mapping functions.
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Fig. 8: A simplified example of page table flipping with only one level of page
tables is shown. After successful exploitation (b) by hammering PTE1, PTE2 is
writeable through vaddr1. This makes the whole physical memory accessible by
changing PTE2 and then accessing the new page through vaddr2.

Table 3: Results of our row finding algorithm using a different number of mea-
surements for the bank-conflict side channel. There are 128 offsets per row. We
search for 10 000 rows and discard the first 100. The search radius is ±50 pages.
# Measurements Duration per Row Found Cache Lines Correct Cache Lines

250 40 ms, σ = 17 124, σ = 4.9 119, σ = 14
500 45 ms, σ = 15 128, σ = 0.8 125, σ = 16
1000 116 ms, σ = 40 125, σ = 4.2 123, σ = 4.3
2500 260 ms, σ = 109 125, σ = 4.9 124, σ = 5.2

We use Presshammer to attack operating system page tables based on the
exploit first shown by Seaborn et al. [44] and many following [5, 11, 17, 23, 48, 53,
57]. The proof-of-concept exploit of Seaborn et al. [44] still relied on full access
to the virtual to physical address translations, while we use the algorithm from
Section 4 to get all the information we need. The attack aims to use a bitflip
to change a page frame number (PFN) in a page table to point to another page
table. This gives the attacker write access to one of its own page tables and,
through it, access to the whole memory. Figure 8 shows the mappings before
and after a successful exploitation. The exploitation technique for Presshammer
does, at large, not change from the Rowhammer exploit. We ran the exploit on
an Intel Core i7-6700K with Ubuntu 20.04.4 LTS using Linux version 5.4.210.
DRAM Row Finding. We use the algorithm described in Section 4 to find
the aggressor rows. On our machine with 16 GiB of memory, 4 GiB were used by
the operating system, and the exploit allocates the remaining 12 GiB of memory.
When allocating enough memory, the buddy allocator of the Linux kernel starts
to return chunks of physically contiguous memory [48, 23].

A single measurement is insufficient to get a definitive result because of sys-
tem noise when using the bank conflict side-channel. Software on other cores of



the CPU also accesses the memory. However, more measurements take longer,
which is relevant if we want to check many rows for bitflips.

We ran the algorithm with 250 to 2500 measurements per address and an-
alyzed the correctness of the result, which can be seen in Table 3. Taking 500
measurements gives the best results. We see that the standard deviation for
the duration increases significantly for a higher number of measurements. This
suggests more interrupts from the operating system that worsen the result.
Memory Templating. We verified that Rowpress bitflips are repeatable, like
Rowhammer bitflips [21]. That means if an aggressor row flips a bit in a neigh-
boring victim row, pressing this aggressor will flip the same bit again if the flip
direction stays the same. This helps because we can template the memory in a
first step, the exploit searches for aggressors that flip bits in exploitable loca-
tions. Bitflips are exploitable if they flip bits in the PFN range of a page table
entry (PTE). We count bits 12 to 32 of a PTE (bits 0 to 20 of the PFN) as
exploitable; this corresponds to a neighboring page up to a page 4 GiB away.

The exploit searches 10 aggressor victim pairs before continuing. This gives
a higher exploit probability later because Rowpress can, like Rowhammer, only
flip bits in one direction. Due to that, there is only a 50 % chance that an
aggressor-victim pair works when filled with an actual page table entry.

The cache prefetcher in the CPU [14] tries to predict which addresses will be
loaded next and fetches them into the cache for increased performance. Luo et al.
[26] turned off the prefetcher for their experiments. However, this is not possible
with our threat model. We evade the prefetcher by shuffling the offsets we access.
This decreases the chance that the prefetcher can detect a pattern in our accesses.
Page Table Spraying. Filling most of the memory with page tables is the
easiest way to increase the chances of successful exploitation in two ways. First, it
increases the chance of putting a page table in one of the previously found victim
rows. Second, it increases the chance of a changed PFN pointing to another page
table. Van der Veen et al. [48] used a more deterministic technique to place the
page table called Phys Feng Shui. They place a page table in a victim page by
precisely massaging the Linux page allocator. However, for this Presshammer
PoC exploit, we chose the more straightforward spraying method.

Page table spraying is performed by mapping the same shared memory file
repeatedly. This puts the shared memory file’s content into the memory only
once, while having to create new page tables for every mapping. After finding
the aggressor and victim pairs, the exploit still has most of the physical mem-
ory reserved from the templating phase. Every time before mapping the shared
memory file again, the exploit frees exactly as many random pages as required
for the newly to-be-created page tables. After creating around 80 % of all page
tables, the exploit frees the victim rows one after another. When the page table
spraying is finished, as much memory as possible is filled with page tables.
Page Table Flipping. After spraying the page tables, the exploit presses the
aggressor rows one after another to induce bitflips in the victim PFNs. Because
the victim rows are not mapped anymore, we cannot simply check for a bitflip.
Instead, the exploit checks all mappings of the shared memory file if the content



is the expected content. If not, a PFN was changed. If the content looks like a
page table, the exploit changes one page-table entry of the page table and checks
through all mappings again. When finding another page with changed content,
the exploit found vaddr1 and vaddr2, as shown in Figure 8b.
Exploitation. With all previous steps performed successfully, the exploit now
has full read and write access to the whole physical address space. The original
proof-of-concept exploit code from Seaborn et al. [44] used this access to patch
a victim binary and change its behavior. For a real exploit, this could be any
binary owned by root with the setuid sticky bit set to run code with superuser
privileges. Without access to the virtual to physical address translations, the
exploit has to scan the memory for the victim data it wants to attack. The
exploit can also search for exploitable kernel structures to, e.g., give the process
or user higher privileges or directly inject attacker-controlled code into the kernel.
For our proof-of-concept exploit, we just dump the physical memory into a file.

While reading the whole physical memory, it is crucial to evict the TLB entry
of the PTE modified by the exploit. If the exploit does not evict the TLB entry,
all reads from vaddr2 will return the same data. To evict it, we keep half of the
mappings we used during the exploit and iterate over them. We free the other
half to relieve the memory pressure on the system and prevent an out-of-memory
situation. Dumping the memory to disk is limited by the disk write bandwidth.

We ran the exploit 5 times on our machine. Of these 5 runs, 3 were success-
ful. It took, on average, 513 s (n=3, σ=125) to gain full access to the physical
memory. One run was unsuccessful because the operating system did not put a
page table in a victim row or no bit flipped in the PFN. The other run was un-
successful because it did not point to another of our page tables after changing a
PFN by row pressing it. If unsuccessful, the exploitation can just be tried again.

6 Discussion of Mitigations and Related Work

The large number of Rowhammer attacks published [3, 5, 7, 8, 10, 11, 16, 23–25,
28, 34, 36–38, 48, 45–47, 44, 53, 55] motivated research on mitigations for DRAM
disturbance errors. While many have been proposed in the academic commu-
nity [4, 13, 19, 29, 31, 32, 39–42, 49, 54, 56], only a few, like TRR [9], have found
their way into practice. As Luo et al. [26] noted, Rowpress is also mitigated by
TRR and other mitigations. However, they also note that similar to Rowhammer
attacks bypassing TRR [9, 17, 23], Rowpress can also bypass it. And the same
is true for many other proposed countermeasures. As CPUs cannot keep a row
open longer than 9 × tREF I , Rowpress always also causes a high number of row
activations similar to Rowhammer. We show in this paper that this makes the
two attacks hard to distinguish in practice, but this also means that we expect
most countermeasures that are effective against current Rowhammer attacks
to be also effective against Rowpress. In the worst case, with some additional
tweaking to the detection threshold values. However, up to now, every deployed
Rowhammer mitigation has been evaded eventually, and there is no guarantee
that this will not be the case for Rowpress as well.



Our findings on the overlaps between Rowhammer and Rowpress effects indi-
cate again [10] that mitigations must be principled not to be bypassable. That is,
they cannot focus on the specific effect triggering the disturbance but must focus
on preventing the effect of the disturbance. Mitigations that use this approach
are, for instance, Error Correction Code (ECC) [5] and Chipkill [6]. ECC uses
8 redundancy bits per 64 bits (DDR4) or 32 bits (DDR5) of data. Chipkill can
correct up to 8 bitflips, e.g., due to a chip failure [6]. However, ECC has already
been bypassed with Rowhammer attacks, and Chipkill suffers from a significant
overhead. As Qureshi [35] noted, it is essential to take an entirely new approach
to mitigate Rowhammer and other upcoming DRAM disturbance effects. The
earliest work in this direction is IVEC [13], which uses a hash instead of an
error-correcting code and flips bits in corrupted memory until the hash matches
again. With a similar approach, Saileshwar et al. [39] also propose a modifica-
tion to ECC memory using a MAC instead of the error-correcting code to detect
and correct a broader range of bitflips. Juffinger et al. [19] extended this ap-
proach into an error-correction system based on lightweight cryptography that
effectively transforms DRAM disturbance errors from reliability issues into per-
formance penalties, which, in the worst case, lead to a denial of service. Recently,
Olgun et al. [29] introduced a Rowhammer mitigation based on a single per-row
hardware counter to track row activations across all banks. This minimizes the
hardware overhead while solving the issue of a small number of counters in TRR.

7 Conclusion

Many works analyzed DRAM disturbance effects and reported a wide range of
prevalence estimations. In our set of 12 DDR4 modules, we can reproduce double-
sided Rowhammer on 6 modules. All other Rowhammer and Rowpress variants
only worked on 2 modules. For a fair comparison between the attack variants, we
evaluated the number of unique bitflip locations for all variants, ranging from
161 to 15 612. However, 95.3 % to 98.8 % of Rowpress unique bitflip locations
are also flipped by double-sided and one-location Rowhammer. This surprising
result raises questions about the difference between the effects these attack im-
plementations trigger and indicates that they might partially exploit the same
root cause. However, this result also allows us to craft the first unprivileged end-
to-end one-location Rowpress attack, which uses the same-row same-bank side
channel to escalate to kernel privileges within less than 10 minutes. Our work
shows that further research is necessary to better understand the differences
between Rowhammer and Rowpress implementations on real systems and their
implications for security.
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