

CSI:Rowhammer

Cryptographic Security and Integrity against Rowhammer

Jonas Juffinger, Lukas Lamster, Andreas Kogler, Moritz Lipp, Maria Eichlseder, Daniel Gruss

2023-05-23

IEEE Symposium on Security and Privacy 2023

The Problem with Rowhammer Countermeasures

• Focusing on characteristics

- Focusing on characteristics
- Which later turn out to be incomplete

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate [Kim+14]

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate [Kim+14]
 - Detectable with Performance Counters ANVIL

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate [Kim+14]
 - Detectable with Performance Counters ANVIL [Gru+18]

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate [Kim+14]
 - Detectable with Performance Counters ANVIL [Gru+18]
 - Hammer Distance is 1 TRR, ZebRAM, B-CATT

- Focusing on characteristics
- Which later turn out to be incomplete
 - Bit Flips are infrequent ECC, Refresh Rate [Kim+14]
 - Detectable with Performance Counters ANVIL [Gru+18]
 - Hammer Distance is 1 TRR, ZebRAM, B-CATT [Kog+22]

CSI:Rowhammer

Generic approach to data integrity protection

• Generic approach to data integrity protection

- Generic approach to data integrity protection
- Detect all data integrity failures with a MAC

- Generic approach to data integrity protection
- Detect all data integrity failures with a MAC
- Best effort correction

- Generic approach to data integrity protection
- Detect all data integrity failures with a MAC
- Best effort correction
- All Rowhammer attacks are DoS in the worst case

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

J. Juffinger (🕊 @notimaginary_) — Graz University of Technology — IEEE Symposium on Security and Privacy 2023

• PMAC construction

- PMAC construction
- QARMA₅-64- σ_0 block cipher [Ava17]

- PMAC construction
- QARMA₅-64- σ_0 block cipher [Ava17]
- Physical address as tag

• PMAC construction

• 5.13 ns 256-bit

- QARMA₅-64- σ_0 block cipher [Ava17]
- Physical address as tag

- PMAC construction
- QARMA₅-64- σ_0 block cipher [Ava17]
- Physical address as tag

- 5.13 ns 256-bit
- 6.60 ns 512-bit

Data Correction

- MACs cannot correct bit flips
- Brute force search with approximate equality

Brute force search with approximate equality
 0010110100101101 → 01011010

 Brute force search with approximate equality
 0010110100101101 ^{MAC}→ 01011010
 MAC from DRAM → 01010010 ✓

 Brute force search with approximate equality
 0010110100101101 ^{MAC}→ 01011010
 MAC from DRAM → 01010010 ✓

- MACs cannot correct bit flips
- Brute force search with approximate equality
 0010110100101101 ^{MAC}→ 01011010
 MAC from DRAM → 01010010 ✓
- Parity bits to shrink search space

CSI:Rowhammer – Correction Time

• OS has some knowledge about the corrupted data

- OS has some **knowledge** about the corrupted data
- Reload disk backed data instead of correcting

- OS has some **knowledge** about the corrupted data
- Reload disk backed data instead of correcting
- Recompute data (page tables)

Evaluation

• Implemented CSI:Rowhammer in gem5

- Implemented CSI:Rowhammer in gem5
- Modified Linux kernel

- Implemented CSI:Rowhammer in gem5
- Modified Linux kernel
- Evaluated correct functionality

- Implemented CSI:Rowhammer in gem5
- Modified Linux kernel
- Evaluated correct functionality
- Evaluated performance overhead

• Rowhammer can induce bit flips in MAC

- Rowhammer can induce bit flips in MAC
- Decreases MAC strength from initial 56 bit

- Rowhammer can induce bit flips in MAC
- Decreases MAC strength from initial 56 bit

Data Flips	log ₂ (# Correction Tries)	Ignored Flips	MAC Strength
5	26.0	3	41.2
6	31.5	2	45.4
7	38.8	1	50.2
8	42.4	0	56.0

Data Flips	log ₂ (# Correction Tries)	Ignored Flips	MAC Strength
5	26.0	3	41.2
6	31.5	2	45.4
7	38.8	1	50.2
8	42.4	0	56.0

• Silent Data Corruption rate less than once per 10^9 billion years.

Data Flips	$\log_2(\# \text{ Correction Tries})$	Ignored Flips	MAC Strength
5	26.0	3	41.2
6	31.5	2	45.4
7	38.8	1	50.2
8	42.4	0	56.0

- Silent Data Corruption rate less than once per 10⁹ billion years.
- Rowhammer second preimage after one year: $9.75 \cdot 10^{-5}$ %

Data Flips	$\log_2(\# \text{ Correction Tries})$	Ignored Flips	MAC Strength
5	26.0	3	41.2
6	31.5	2	45.4
7	38.8	1	50.2
8	42.4	0	56.0

• Corruption exception nesting detection

- Corruption exception nesting detection
- Virtualization with or without guest support

- Corruption exception nesting detection
- Virtualization with or without guest support
- Many more interesting implementation details

- Corruption exception nesting detection
- Virtualization with or without guest support
- Many more interesting implementation details
- Detailed security evaluation

CSI:Rowhammer

Cryptographic Security and Integrity against Rowhammer

Jonas Juffinger, Lukas Lamster, Andreas Kogler, Moritz Lipp, Maria Eichlseder, Daniel Gruss

2023-05-23

IEEE Symposium on Security and Privacy 2023

■ jonas.juffinger@iaik.tugraz.at ♥ @notimaginary_ ● www.jonasjuffinger.com PoC: github.com/CSIRowhammer/CSIRowhammerPoC

References i

- [Ava17] Roberto Avanzi. The QARMA Block Cipher Family: Almost MDS Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes. In: IACR Transactions on Symmetric Cryptology 2017.1 (2017), pp. 4–44.
- [Gru+18] Daniel Gruss et al. Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018.
- [Kim+14] Yoongu Kim et al. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In: ACM SIGARCH Computer Architecture News 42.3 (2014), pp. 361–372.
- [Kog+22] Andreas Kogler et al. Half-Double: Hammering From the Next Row Over. In: USENIX Security Symposium. 2022.

14 Jonas Juffinger, Lukas Lamster, Andreas Kogler, Moritz Lipp, Maria Eichlseder, Daniel Gruss — IEEE Symposium on Secur