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Abstract—In this paper, we present CSI:Rowhammer, a princi-
pled hardware-software co-design Rowhammer mitigation with
cryptographic security and integrity guarantees, that does not
focus on any specific properties of Rowhammer. We design a
new memory error detection mechanism based on a low-latency
cryptographic MAC and an exception mechanism initiating a
software-level correction routine. The exception handler uses
a novel instruction-set extension for the error correction and
resumes execution afterward. In contrast to regular ECC-
DRAM that remains exploitable if more than 2 bits are
flipped, CSI:Rowhammer maintains the security level of the
cryptographic MAC. We evaluate CSI:Rowhammer in a gem5
proof-of-concept implementation. Under normal conditions, we
see latency overheads below 0.75% and no memory overhead
compared to off-the-shelf ECC-DRAM. While the average
latency to correct a single bitflip is below 20 ns (compared
to a range from a few nanoseconds to several milliseconds for
state-of-the-art ECC memory), CSI:Rowhammer can detect
any number of bitflips with overwhelming probability and
correct at least 8 bitflips in practical time constraints.

1. Introduction
Rowhammer is a widespread DRAM issue, where cells lose
charge faster upon accesses to rows in physical proxim-
ity [40]. By repeatedly accessing a row, an attacker can cor-
rupt data in adjacent rows to undermine system security, i.e.,
to gain kernel privilege from unprivileged applications [60],
[10], [23], [66], [68], [41] and web browsers [24], escape
web browser sandboxes [60], [21], [19], hammer from inside
secure enclaves [23], [33], escape virtual machines [72],
attack over the network [67], [47], and read memory to
extract encryption keys [43]. These attacks motivated a long
list of research on Rowhammer mitigations.

Rowhammer mitigations focus on detection, neutraliza-
tion, or elimination [23] in software or hardware. Detec-
tion-based mitigations use static code analysis, performance
counters from software, and the analysis of memory ac-
cess patterns in hardware. However, they can be circum-
vented [23], [41]. Neutralization-based mitigations tolerate
bitflips but restrict exploitation by physically distancing
aggressor and victim rows [14], [42]. However, some ham-
mer patterns can still succeed [40], [41]. Elimination-based
mitigations are mainly hardware solutions, e.g., doubling the
refresh rate and error correction methods like ECC DRAM
and Chipkill, with limited effect on Rowhammer [40], [16].
Target Row Refresh (TRR) is designed specifically against

Rowhammer. It can, however, be bypassed by exhausting the
number of counters [22], [19], [34] or by using more ad-
vanced access patterns, e.g., half-double Rowhammer [41].
Thus, modern devices are still vulnerable [41], [34], high-
lighting the need for effective Rowhammer mitigations.

In this paper, we propose CSI:Rowhammer, a novel
Rowhammer mitigation. Instead of focusing on specific
properties of Rowhammer that can later turn out to be
incomplete, e.g., flips happen only in directly neighboring
rows [42], [41], [14], or at least two rows in a bank must be
accessed [8], [23], the idea of CSI:Rowhammer is to provide
more principled security guarantees. CSI:Rowhammer roots
its security in a cryptographic message authentication code
(MAC) for cryptographic security and integrity. It combines
MAC-based error detection in hardware and flexible error
correction in hard- and software. CSI:Rowhammer stores
its MAC next to the data on the DRAM similarly to ECC
memory and has, therefore, the same memory overhead.

With CSI:Rowhammer, the MAC is computed and com-
pared in the memory controller upon every DRAM access.
If data was corrupted and the comparison fails, the memory
controller tries to correct a single bitflip. If unsuccessful, it
raises a new exception which the kernel handles by trying to
correct the data using different strategies. For this purpose,
the MAC computation is also implemented as a new CPU
instruction. A simple strategy, the universal fallback, is
our parity-guided search, which outperforms a direct brute-
force search that can become inefficient for higher numbers
of bitflips. With this approach, we can correct 5 bitflips
in a 256-bit data word in less than 300ms. Beyond this,
CSI:Rowhammer also enables more advanced strategies. It
will, for instance, not correct errors in unmodified file-
backed pages and reloads them from the disk instead, en-
abling the correction of any number of bitflips practically
instantly. Another advantage of the correction in software is
that CSI:Rowhammer enables OS vendors to implement an
interface that allows admins to define reliability levels per
process and page. For example, the maximum number of
bitflips searched before killing a very important process in
contrast to a process that can easily be restarted.

We analyze the detection and correction abilities of
CSI:Rowhammer and show that it achieves significantly
higher security and integrity than state-of-the-art error cor-
rection. In contrast to ECC memory, CSI:Rowhammer does
not have a strict upper bound or constraints on the number
and location of detectable bitflips. To break CSI:Rowham-



mer, an attacker needs to forge a cryptographic MAC, which
is infeasible with the means of Rowhammer bitflips.

We evaluate the performance of CSI:Rowhammer based
on a proof-of-concept implementation in a CPU and memory
controller in gem5, running a modified Linux kernel. We
show that our hardware-software co-design allows for low-
latency, high-throughput integrity checking and, therefore,
a performance impact of less than 0.75% under normal
operation. While the average latency to correct a single
bitflip is less than 20 ns, CSI:Rowhammer can detect any
number of bitflips and correct up to 8 bitflips in 256 bits
of data within a practical time frame. CSI:Rowhammer has
less than 0.01% overhead on the CPU area. This underlines
that CSI:Rowhammer is a practical mitigation that should be
deployed to fully and permanently mitigate Rowhammer.
Contributions. We make the following contributions:
1) We propose CSI:Rowhammer, a hardware-software co-

design to fully mitigate Rowhammer attacks using a
cryptographic MAC for error detection in hardware.

2) We propose a novel software-level correction mechanism
using a parity-guided bit-correction search as well as
sophisticated correction strategies.

3) We evaluate CSI:Rowhammer with a proof-of-concept1

implementation in gem5. We show that overheads are
minimal, e.g., the performance overhead is below 0.75%
while the security level is raised to cryptographic levels.

Outline. First, we provide background in Section 2 and an
overview of CSI:Rowhammer in Section 3. Hardware and
software changes are discussed in Section 4 and Section 5.
We evaluate the security and performance of CSI:Rowham-
mer in Section 6 and discuss related work in Section 7.
In Section 8, we discuss the compatibility to other technolo-
gies and possible improvements and conclude in Section 9.

2. Background
In this section, we discuss DRAM, Rowhammer and its
properties, as well as lightweight cryptography.

2.1. DRAM
The DRAM has multiple levels, allowing parallel access to
the last level, the banks, to maximize throughput. Banks are
divided into rows of cells, i.e., the transistors and capacitors
storing the data. A DRAM cell’s charge depletes over time,
requiring refreshes every 32ms to 64ms [35] to prevent
data loss. These refresh commands are typically interleaved
with normal data accesses by the memory controller, which
is responsible to refresh each row within this time window.
Error Correction Code (ECC) and Chipkill memory
have an additional memory chip to store data with correction
codes [16], 8 redundancy bits per 64 bits (DDR4) or 32 bits
(DDR5) of data. These are transferred over a wider data bus
of 72 bits and 40 bits, respectively. Chipkill is a DRAM
error correction method, which, using the same additional
memory, can correct up to 8 bitflips coming from a failure
of a single DRAM chip [20]. ECC and Chipkill can correct

1. Proof of Concept URL: https://github.com/IAIK/CSIRowhammer.

errors from a single faulty DIMM contact. We compare ECC
and Chipkill to CSI:Rowhammer in Section 7.2.
DRAM Errors. In large-scale systems, DRAM errors from
various physical causes like cosmic rays [63] or random oc-
currences, increasing with aging cells and temperature [59]
are well studied. Schroeder et al. [59] monitored the majority
of Google’s server fleet for 2.5 years starting in 2006. They
observed failure rates of up to 70 000 per billion device
hours (FIT) per Mbit of DRAM capacity. On the worst
motherboard and memory configuration, 0.03% of DIMMs
saw an uncorrectable error in one year. Hwang et al. [29]
studied DRAM errors on four systems and observed similar
failure rates. Out of the 40 960 nodes monitoring Chipkill
errors where bitflip recovery failed, 1.34% had at least one
Chipkill error in 583 days. Bautista-Gomez et al. [9] studied
the frequency of multi-bit errors, focusing on independent
errors, i.e., they only count errors from the same word once.
In total, they observed 55 000 independent memory errors
in over a year, of which 85 (0.15%) were not correctable.

2.2. Rowhammer
In 2014, Kim et al. [40] discovered the Rowhammer effect,
i.e., bitflips can be induced in DRAM through disturbance
errors triggered by frequent memory accesses. For a more
detailed background on Rowhammer, we refer the reader to
this work or [50] for an overview. We discuss and compare
mitigations in Section 7.
Data Dependency. Rowhammer causes a bit flip by dis-
charging the capacitor in a neighboring cell. For this to
happen the neighboring capacitor in the aggressor row must
be discharged [40], [69]. Therefore, there is a correlation
between the data in the aggressor rows and the flips, usu-
ally the victim adopts the values of the aggressor row.
Kwong et al. [43] used this dependency to leak encryption
keys with RAMBleed. If the orientation of the cells (true-cell
/ anticell) is inverted between the aggressors and victim row,
the inverted values of the aggressor row are adopted [69].
Rowhammer Bitflips. Kim et al. [40] examined the number
of multi-bit errors caused by Rowhammer per single 64-
bit word. The worst tested module had 1.9% uncorrectable
errors, with 0.002% being undetectable by ECC, and Row-
hammer is getting worse with every new DRAM generation
and increasing density. LPDDR4 requires less than a 10th
of the activations than DDR3 memory to hammer [53], [36].

Cojocar et al. [16] used a public Rowhammer bitflip
database with 14 DIMMs [65] to craft the first Rowhammer
attack on ECC memory. Their AMD CPU raises a machine
check exception when detecting an uncorrectable bitflip,
while the Intel CPU ignores it. On AMD, on average,
7.42% of bitflips were undetectable; on Intel, 10.89% were
uncorrectable and, therefore, usable for an attack. They also
found that many ECC implementations use more complex
symbol-based correction methods [16], capable of detecting
up to 4 bitflips if they are in different symbols but not able
correct multi-bitflips. Hassan et al. [26] flipped up to 7 bits
in a single 64-bit data word. This is beyond the detection
and correction capability of every ECC implementation.
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Figure 1: High-level overview of the hardware and software
components of CSI:Rowhammer.

2.3. Lightweight Cryptography
Modern cryptography is often not designed for constrained
devices that face various limitations but for high-perfor-
mance devices. Lightweight cryptography offers algorithms
designed to provide security and privacy guarantees while
enabling their implementation on devices constrained in
their energy consumption, die area, or latency [52].
Lightweight Message Authentication Codes (MAC). A
message authentication code (MAC) is an authentication tag
computed from a message input and a secret key [51]. The
key protects the integrity and authenticity of the message:
Only the owner of the key can compute and verify the MAC
of a message. The attacker cannot forge a valid MAC of a
new or modified message. Most widely-deployed MACs are
based either on hash functions (like HMAC [51]) or on block
cipher chaining (like CMAC), both of which are inherently
sequential and thus have a high latency. A lightweight design
for short inputs is SipHash [5], but its ARX design is more
suited for software and not optimized for latency in hard-
ware. More recently, tweakable block ciphers (TBCs) [48]
have emerged as a promising lightweight primitive. TBCs
are similar to block ciphers, but have an additional public
tweak input that selects the encryption permutation together
with the key. QARMA is a TBC with low latency [6].

3. CSI:Rowhammer
The idea of CSI:Rowhammer is to protect the integrity of all
data in the DRAM with a cryptographic MAC to mitigate
software-based DRAM fault attacks like Rowhammer but
also randomly occurring bitflips. It is designed to work on
a large variety of systems, from smartphones to large-scale
virtualized server environments. As illustrated in Figure 1,
CSI:Rowhammer is a hardware-software co-design.

On every access to main memory, CSI:Rowhammer uses
a cryptographic MAC to detect if data has been corrupted.
The computation and comparison of these MACs are per-
formed in the memory controller 1 and stored with the data
2 to enable low-latency accesses. The MACs are stored

on the same memory chip next to each other to make
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Figure 2: Partitioning of the data, MAC, and parity bits. The
data is 256 bits (DDR5) or 512 bits (DDR4).

hammering them difficult. MACs cannot directly correct
data. The memory controller tries to correct a single flip
directly in hardware 3 by correction as a search. If this fails,
this task is handed over to the operating system 5 by raising
a data corruption exception 4 . The exception handler uses
different correction procedures to reconstruct the correct
data. Using a new dedicated instruction set extension 6 , the
data correction is performed efficiently. However, corruption
could also occur in the exception handler. Hence, it is
stored in a dedicated secure on-die memory 7 that is not
vulnerable to Rowhammer, similar to a CPU cache.
Detecting Bitflips. CSI:Rowhammer uses ECC memory for
its additional space to store the integrity information (MAC
and parity), as shown in Figure 2. The usage of a MAC
allows CSI:Rowhammer to detect all memory corruptions,
unaffected by their number, location, or distribution, which
is enough to mitigate all Rowhammer attacks other than
denial of service. We use a MAC based on the QARMA
block cipher [6], designed for low latency, power, and area
and used on ARM for pointer authentication [4]. With this
basis, CSI:Rowhammer can be integrated into CPUs from
smartphones to servers with negligible performance impact.

Typical ECC DDR4 memory stores 8 redundancy bits for
64 bits of data, ECC DDR5 for 32-bits of data. CSI:Row-
hammer uses a 56-bit MAC and 8 parity bits, summing up to
64 bits in total. Thus, we protect 512 bits of data on DDR4
or 256 bits on DDR5. ECC data words can also be larger
than 64 bits [16], making efficient correction and secure
detection impossible. A trade-off can be a reduced correction
capability in favor of an equally strong detection.

The MAC’s key is randomly generated on each boot by
the CPU internally. The memory controller and CPU cores
have access to it, but it is not exposed to the software level.
The memory controller computes the integrity information
for every memory access. On a write operation, it computes
the new MAC and parity and stores them in the DRAM. On
a read, it computes and compares the MAC and parity with
the stored one. The MAC computation is also implemented
in every CPU core as a new instruction to enable quick and
efficient multi-bit error correction from software.
Correcting Bitflips. The memory controller corrects single
bitflip errors caused by corrupted data, MAC, or parity and
permanent errors caused by a faulty contact as-a-search.

If it fails because there is more than one bitflip, it
raises an exception for the operating system. For instance,
the advanced error correction algorithm can reload disk-
backed data directly. Other data errors with no additional
information are corrected by searching for the bitflips in
the data. Our instruction set extension allows to access raw
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data and compute the MAC efficiently in hardware without
software access to the key. Our search algorithm is guided by
parity bits and brute forces possible corrections within each
parity block. Thus, the search time increases exponentially
with the number of bitflips. Depending on the importance
of the process with the corrupted data or instruction, the
operating system can decide whether to continue the search
or kill and restart the process, or even halt the system. More
generally, these decisions are up to the system vendor or
administrator. OS vendors can decide on correction steps and
to which extent they are tweakable by administrators, e.g.,
the maximum number of flip corrections for the kernel or
user space. In case of a successful correction, the operating
system can remember the necessary information for future
corrections of the same physical location. If the correction
is impossible, CSI:Rowhammer still mitigates Rowhammer
exploits, as the detection is sufficient to stop an attack.
Protecting the Correction Mechanism. The exception
handler for the data corruption exception must not be cor-
rupted itself. Otherwise, a correction is not possible any-
more, and the system must halt. For CSI:Rowhammer, we
propose a small secure on-die memory, similar to a cache but
mapped to a physical address range. The operating system
puts all code required for correction into this secure memory.
Limitations. The goal of CSI:Rowhammer is to provide a
negligible performance impact while fully mitigating Row-
hammer. However, it does not protect against all data in-
tegrity attacks. In our threat model, the attacker can flip
bits with Rowhammer, which is difficult to do precisely and
allows only a limited number of flips. Replay, relocation,
or substitution attacks, which require physical access to the
memory bus, are out of scope. CSI:Rowhammer does not
give any correction guarantees for a high number of bitflips,
it can correct typical numbers of bitflips caused naturally
or by Rowhammer. The primary goal is the detection of
memory corruption. CSI:Rowhammer detects all bitflips
except the negligible portion resulting in MAC collisions
due to the cryptographic design (see Section 6.7).

3.1. Error Correction as a Search
ECC memory uses symbol-based error-correction codes to
detect a certain number of bitflips and usually correct one
bitflip [16]. A MAC can only detect bitflips in the data but
cannot correct them or give information about their location.
To find the correction where no other strategy can be used,
we have to flip bits and compute and compare the MAC
successively. We find it when the MACs match. We start
with flipping one bit and if the correction is not found,
continue with all permutations with two flips and so on.
Huang et al. [28] defined this search for bitflips in corrupted
data as Error Correction as a Search. While our approach
follows the same principle, the implementation differs.
Parity Bits. To improve the correction time, we use parity
bits to find locations of flips. The 8 parity bits are computed
by XORing 8 blocks of the data, as shown in Figure 2.
The chosen partitioning allows for an efficient correction
of permanent errors, e.g., on a transmission line or contact
(see Section 4.4). We use Figure 3 to show how to get bitflip
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Figure 3: Bitflip locations and parity bits. Gray data cells
show a bitflip, and gray parity bits a corresponding parity
mismatch. In the worst case, blocks (Ba - Bd) contain only
an even number of flips. In the best case, every parity bit
corresponds to one or zero flips.

locations from the parity bits. In Figure 3a, the non-matching
parity bits indicate an odd number of flips in Ba and Bb. The
matching parities indicate an even number or no bitflips in
Bc and Bd. In 3b, there is a mismatching MAC. The parity
bits indicate an even number of flips in at least one block.
In 3c, there is an odd number of bitflips in all blocks.
Correction Algorithm. We first consider only flips in the
data and explain bitflips in the MAC and parity next. The
correction algorithm pseudocode is attached in Appendix A.

In Figure 3a, there are at least 2 bitflips, one in Ba

and Bb. We try all permutations of these two flips. Because
of the bitflips in 9 and 11, the MACs never match, and
the correction continues. We add a double flip into our
permutations that can be in any of the 4 blocks. While
testing these permutations, we have find the correct data.
MAC Corruption. Error correction as a search in the data
assumes that the MAC is uncorrupted. However, as the MAC
is stored next to the data on the DRAM, it is also vulnerable.
In summary, there are four possible scenarios:
• No corruption, the MACs are equal.
• MAC corruption, the resulting MAC and the one in the

DRAM only differ by a few bits.
• Data corruption, the resulting MAC differs significantly.
• Data and MAC corruption, the resulting MAC and the one

in the DRAM differ by few bits when data is corrected.
CSI:Rowhammer performs error correction as a search and
does not check the MAC for equality but approximate
equality. If the data is correct, bitflips in the MAC can be
found quickly, by checking for approximately equality. The
limitations and security of approximate MAC equality are
evaluated in Section 6.6. The single MAC computation for
this check is done prior to the bitflip search on the data.
Parity Corruption. CSI:Rowhammer can correct data with
a maximum of one flip in the parity bits. This is a limit we
choose for a good compromise between correction time and
capability. The parity bits make up only 2.5% (DRR5) or
1.4% (DRR4) of the data and integrity information, and 2
flips are, therefore, a reasonable limit. Error detection is not
compromised by the chosen limit of one parity flip.
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Figure 4: CSI:Rowhammer PMAC for 256-bit data [57]. The
output of the fourth QARMA block is truncated to 56 bit.
The physical addresses used as tweaks are shifted right by
log2(64) = 6 bit. They are unique for every message block.

To take a parity bitflip into account, we add one ad-
ditional step to the correction algorithm. We again take
Figure 3a and assume Pc to be flipped. In the first step, the
algorithm will try the correction with 3 bitflips correspond-
ing to the mismatching parity bits. This attempt fails, and
the additional step is performed. Every parity bit is flipped
successively, and the new expected number of bitflips is
calculated. If Pd is flipped, the new expected number of
bitflips is 4. If Pc is flipped, it is 2. The first step is repeated
with all parity flips that decrease the number of expected
bitflips. The correction with this additional step fails, so a
double flip is assumed without flipping parity bits, which
also fails. The additional step is added again. During this
step, Pc is flipped, and the correction is attempted with the
2 single bitflips from Pa and Pb and one double flip. This
correction succeeds, similarly to the first example.
Limitations In theory, it is possible to correct any num-
ber of bitflips this way. However, there are two upper
bounds: First, the maximum number of flip permutations
must not exceed the security boundaries of the MAC (see
Section 6.6). Second, the number of permutations and com-
putation time increases exponentially with the number of
flips, limiting this search method to lower numbers of flips.

3.2. Cryptographic Design of the MAC
For a low-overhead mitigation, we require a MAC with very
low latency, low power, and low hardware area requirements.
QARMA is a lightweight tweakable block cipher design [6]
fulfilling these requirements, and is notably already used in
practice by ARM for pointer authentication [4]. QARMA
allows pipeline stage boundaries between any two rounds
[6] and supports block sizes of 64 or 128 bits.
CSI:Rowhammer MAC. We need to map 256-bit or 512-
bit inputs to 56-bit tags. We use a parallel MAC (PMAC)
construction [13], [57], [49] with 64-bit message blocks,
where the physical address of each block is used as tweak for
QARMA (see Figure 4). The resulting 64-bit tag is truncated
to 56 bits to compute the final MAC. The security of the
MAC is evaluated in Section 6.6. Table 1 shows latencies of
the QARMA cipher variants [6], different MAC computation
methods, and CPU memory accesses for comparison. The
CSI:Rowhammer MAC is built using one QARMA cipher
with 6 pipeline stages, resulting in the following latency for
a 256-bit input (see Figure 4 and Table 1):

2.20 ns + 2.20 ns ⋅ 1
6
⋅ 2 + 2.20 ns = 5.13 ns

TABLE 1: Latency comparison of a single QARMA invoca-
tion, simulated for a 7 nm node similar to modern CPUs [6],
the PMAC construction using pipelined QARMA5-64-σ0,
and CPU memory accesses [18]. The throughput defines
how many calls fit in the pipeline of a single QARMA block.

Operation Latency Throughput
QARMA5-64-σ0 2.20 ns 6
MACPMAC−256 5.13 ns

6 pipeline stages
4 invocations = 1.5

MACPMAC−512 6.60 ns 0.75
L2 cache access 3.86 ns –
L3 cache access 10.27 ns –
DRAM access 113 ns –

4. Hardware Modifications
The generic design of CSI:Rowhammer can be integrated
into different architectures. However, for our PoC (see Sec-
tion 6.1) and this section, we focus on the changes for x86.

CSI:Rowhammer implements the MAC computation in
hardware to minimize the overhead for DRAM accesses and
allow the OS to compute it quickly during a correction. The
MAC key is randomly generated. The memory controller
computes and compares the MAC, and corrects single-bit
errors and errors from faulty contacts. It provides a small
secure memory to store the code required to handle a
correction exception. Finally, the CPU cores must provide
instructions to access corrupted data and compute the MAC.

4.1. MAC Key Generation
CSI:Rowhammer uses a MAC with a CPU-internal key
generated using a cryptographically secure random num-
ber generator at boot [30], [1], [3]. At runtime, this key
is available to the memory controller and all CPU cores
in a software-inaccessible register. Multi-processor systems
share the DRAM and, therefore, the key, over the processor
interconnect. Attacks with physical access are out of scope.

4.2. Integrity Check
The memory controller is responsible for detecting data
integrity failures in DRAM. It computes the integrity in-
formation for all memory accesses. On writes, the memory
controller computes and stores the integrity information on
the DRAM. On reads, it retrieves the integrity information
and compares it with the computed one. A mismatch indi-
cates a corruption of the data or integrity information.

4.3. Single-Bit Correction
If a corruption is detected, the memory controller starts
the correction by performing a correction as a search for
a single bitflip in hardware. A corruption in the MAC is
found during the integrity check verification by checking for
approximate equality. If the corruption is in the data, one
parity bit provides the location of the affected data block.
In the worst case, the correction requires 32 or 64 MAC
computations for 256 and 512 bits of data, respectively, half
of that on average. If the integrity check reveals errors in
the parity bits, the parity bits are recalculated.
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During the search, only one of the 4 or 8 input blocks
changes. The other blocks can be computed once and reused.
Thus, the subsequent MAC computations are two QARMA
calls with a total latency of 4.40 ns and 12 pipeline stages.
This results in an average single bitflip correction time of:

5.13 ns + 16 ⋅
4.40 ns

12
= 11 ns

For DDR4 memory, it is 18.3 ns. If the parity bits indicate
two or more flips, the correction for a faulty contact is tried.

4.4. Permanent Errors from a Faulty Contact
Permanent faults from, e.g., a faulty DIMM contacts or
transmission lines make up a considerable part of DRAM
errors [62]. They must be corrected in hardware, as they
cannot be fixed by writing back correct data [63]. Similar
to ECC and Chipkill, CSI:Rowhammer is able to correct the
errors caused by a singly faulty contact. The correction is
performed before raising a corruption exception, if the MAC
and more than one parity bit mismatch. For this explanation,
we assume that a faulty contact causes bits to stick-at-0.

The memory controller first computes the logical OR
over blocks with the size of the DRAM data bus width. The
OR result shows the stuck contact offset as these bits are
always ‘0’. The parity bits mismatch for the blocks where
the stuck contact had an effect. Together, both block and
bit offset are identified. With this, the correction requires as
many MAC computations as there are ‘0’s in the OR result.
With random data, there is a probability of 11.8% (32-bit
bus) or 22.2% (64-bit bus) that there is an additional ‘0’, not
caused by a faulty contact, resulting in a correction time of
5.74 ns and 8.05 ns, respectively. This the CSI:Rowhammer
performance impact, but keeps the system usable.

For stuck integrity information contacts, it works simi-
larly. It affects 7 bits in the MAC and 1 in the parity bits.
Correct data can be recognized if all bits at an offset are
stuck and the rest of the MAC is correct. This reduces the
effective MAC size to 56− 7

2
= 52.5 bit. We leave the design

and analysis of a faulty contact correction with bitflips in
the DRAM for future work. CSI:Rowhammer cannot correct
both at the same time, similar to ECC and Chipkill.

4.5. Data Corruption Exception
CSI:Rowhammer adds one new exception to inform the
operating system about a data corruption not correctable
in hardware. We call it data corruption exception and use
one of the reserved vectors 21-31 [31]. The data corruption
exception is designed as a fault, allowing to continue at the
faulted instruction after the correction. The handler receives
the physical address of the corrupted data or instruction from
an architecture-dependent register. We propose the same
register used for page faults, the CR2 on x86 [31]. It contains
the physical address to not rely on page tables. In virtualized
environments, the host receives the exception, translates the
host physical address (HPA) to the guest physical address
(GPA), and forwards it to the guest. This mechanism allows
transparent correction for guests not supporting CSI:Row-
hammer via the host (see Section 8.1).

TABLE 2: The three instructions of CSI:Rowhammer used
for efficient and secure correction in software.

Instruction OPs Description

csi_mac ZMM Calculates the MAC of the data (OP1)
for the physical address (OP2) and
writes it into OP3.

rx
rx

csi_load rx Reads from physical address (OP1) the
raw corrupted data (OP2) and integrity
information (OP3).

ZMM
rx

csi_xchg rx Writes new data (OP4) into the physical
address (OP1) if the old data (OP2) and
MAC (OP3) are unchanged at physical
address (Listing 4 in Appendix B).

ZMM
rx
ZMM

4.6. Secure On-Die Memory
A corruption must not happen in any parts of the OS
required to correct corruptions, otherwise, the system must
halt. To guarantee no corruption for the exception handler
code, IDT, and GDT, the CPU provides a small on-die
random access memory.2 It is part of the physical address
range and the OS can map it into virtual memory with non-
evictable TLB entries. For systems without an MMU, the
memory is at a fixed physical address. It is 4 pages large
to fit our prototype implementation of the correction as a
search algorithm (0x1500 bytes), the IDT, and GDT.

In virtualized environments, the secure memory is simu-
lated for the guests in the DRAM. In case of a corruption in
the simulated secure memory, the host transparently corrects
it. This guarantees the incorruptibility of the secure memory
for all guests without requiring a larger SRAM.

4.7. CPU Cores
The operating system corrects data with more than one bit-
flip. The CSI:Rowhammer hardware modifications support
the operating system with instructions to compute the MAC
and access the raw corrupted data and integrity information.
Instruction Set Extension CSI:Rowhammer adds three
privileged instructions, shown in Table 2, to allow for cor-
rection in software. csi_mac takes the 256-bit or 512-bit
data in an AVX register and the physical address, i.e., the
tweak, and writes the computed MAC back to a general-
purpose 64-bit register. Implementing the MAC computation
in hardware allows the MAC key to stay secret.

Additionally, two new instructions access the raw data
and integrity information by its physical address without
raising an exception. The csi_load instruction loads the
corrupted data into a ZMM register and the integrity in-
formation into a 64-bit register. The csi_xchg instruction
writes the corrected data from a ZMM register back into
the memory if it did not change in the memory while the
correction was running. Section 8.4 describes the purpose of
csi_xchg, i.e., prevent correction race conditions. Listing 4
in Appendix B shows its pseudo-code.

2. On-die area is not the primary limitation today anymore. Some Intel
processors utilized unused die area already with the integration of, e.g.,
128MB DRAM chips, the Apple M1 quadrupled the L1 size with marginal
thermal and efficiency changes, as they are using 4 times larger pages.
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Within a virtualized guest, the instructions transparently
translate the given GPA internally to an HPA to match the
MAC’s tweak and the actual physical location. The last
translation is cached for quick succeeding executions.
Nesting Bit We need to detect nesting of the corruption
exception handler (see Section 5.2). For this, we need one
bit in a register that is unique for every thread. We propose
using the highest bit of the CR3 register, as it is unused, and
its value is already unique for every task. The only hardware
change is to allow writing this bit without flushing the TLB.
Non-evictable TLB Entries To ensure compatibility with
the IDT and the CPU’s frontend, the secure memory is
addressable with virtual addresses. The paging structures to
map the secure memory to a virtual address also need to be
protected against Rowhammer. We propose reusing existing
mechanisms and allowing the locking of secure memory
pages in the TLB [2]. This allows the CPU to resolve
addresses directly from the TLB. We propose using an MSR
interface to configure these virtual to physical mappings.

5. Software Modifications
The memory controller detects data corruption and tries to
correct single bitflips and errors from faulty contacts. If it
fails, the operating system takes over to try the correction
and limit the impact of an uncorrectable corruption.

5.1. Exception Handling
The operating system must register a new handler for the
data corruption exception. The handler and the correction-
as-a-search code are secured against corruption by residing
in the secure on-die memory provided by the CPU. The
advanced correction procedure uses various kernel code and
structures and is, therefore, not protected against bitflips.
If kernel code or data is corrupted and accessed during
a correction, another exception is raised and handled in
a nested handler. The nested handler detects the nesting
(see Section 5.2) and attempts a correction as a search
without accessing any data outside the secure memory.

The kernel stack, used by the exception, is unique for
every task, and can, therefore, not be in the secure memory,
and is vulnerable to bitflips. To deal with corruption in the
kernel stack, we forward the kernel stack pointer 64 bytes
before accessing it. In case of corruption, the following
exception handler moves the kernel stack pointer out of the
corrupted data block. It can then correct the kernel stack
and continue with the previous exception handler.

5.2. Nesting Detection
Detecting the nesting of our exception handler is important
as it means that there was a corruption during an advanced
correction attempt. If that happens, the exception handler
must not run the advanced correction and can only correct
by search. Listing 1 shows how the nesting detection is
implemented using the highest bit in the CR3 register. To
detect nesting, we use one bit, called the nesting bit. If the
current Linux task is in the corruption exception handler it
is 1 and if not, it is 0. It must fulfill two conditions:

1 corruption_exception_handler() {
2 if (has_nested_bit_set(CR3)) {
3 enable_interrupts();
4 error_correction_as_a_search(corruption_address);
5 } else {
6 set_nested_bit(CR3);
7 enable_interrupts();
8 advanced_error_correction(corruption_address);
9 clear_nested_bit(CR3);

10 }
11 }

Listing 1: Pseudocode of the corruption exception handler
with nesting detection. The advanced error correction is
guarded by the nested flip being one. If a second exception
is raised the error correction as a search is executed.

1 error_correction_as_a_search(corruption_address) {
2 // get the raw corrupted data
3 data, integrity = csi_load(corruption_address);
4 data_copy = data;
5 mac = integrity & 0x0FFFFFFFFFFFFFF;
6 parity = (integrity & 0xF00000000000000) >> 56;
7

8 correction_as_a_search(parity, [&](flip_mask) {
9 data ˆ= flip_mask;

10 // compute the mac of the data
11 computed_mac = csi_mac(data, corruption address);
12 if (popcount(mac ˆ computed_mac) < 4) {
13 goto found_correction;
14 }
15 data ˆ= flip_mask;
16 });
17 // no correction found, kill the process or panic
18 panic();
19 found_correction:
20 // write the correct data back if it did not change
21 csi_xchg(corruption_address, data_copy, mac, data);
22 reti;
23 }

Listing 2: Pseudocode showing the usage of the csi_load,
csi_mac and csi_xchg instructions.

• When the corruption exception happens, the nesting bit
must already be stored in a CPU register as retrieving it
from memory could cause another corruption exception.

• The bit is either set or not set for each task, i.e., process or
thread. Scheduling is enabled during correction, but two
independent tasks can have two (independent) exceptions.

5.3. Locking
We use a lock in the advanced correction preventing two
tasks from correcting the same data. If a task accesses data
already being corrected, it waits, and the CPU core can run
other tasks. This lock does not exist in a nested handler as it
cannot access kernel resources. In that case, the csi_xchg
instruction prevents the unintended overwriting of new data
with old corrected data (see Section 8.4). The locking of
shared kernel resources allows for a theoretically unlimited
number of simultaneously running advanced corrections.

5.4. Correction Procedure
The correction procedure uses the great flexibility that can
be achieved with the knowledge available to the operating
system. File-backed pages like memory-mapped files, page
cache pages, or the kernel itself can be reloaded from the
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disk, correcting any number of bitflips. Taking into account
that Rowhammer bitflips are reproducible [40], the kernel
can remember the locations of previously corrected bitflips
and use them for future corrections. If the page cannot
be reloaded from the disk and is not in the cache, the
correction is performed as a search. If successful, the page
is reallocated to minimize the chance of a corruption in the
near future. If the correction as a search was unsuccessful,
the operating system can behave differently. OS vendors can
enable to define different reliability levels, for example, the
maximum duration of the search based on the importance
of a process or the impact of a restart of a process, e.g.,
a database server vs. a service logging system stats. If the
uncorrectable corruption is in the kernel, it can only try to
shutdown and restart as gracefully as possible. Figure 8 in
Appendix E shows the correction in a flow chart.

Listing 2 shows the usage of the csi_load, csi_mac
and csi_xchg instructions. First, csi_load is used to get
the data and integrity bits from the physical corruption_-
address. The data is duplicated for the csi_xchg. During
the correction as a search, the csi_mac instruction is used to
compute the MAC. If data was found with an approximately
equal MAC, it is written back into the DRAM with the
csi_xchg instruction. It checks if the data was modified in
the meantime and only writes it if it is unmodified.

6. Evaluation
To test the performance, correct functionality, and security of
CSI:Rowhammer, we evaluate it using different techniques.
We build a prototype with gem5 running a modified Linux,
simulate corrections to test our algorithm, and calculate the
security boundaries of our MAC under different scenarios.

6.1. Prototype Implementation with gem5
We implement a prototype of CSI:Rowhammer’s hard-
ware modifications in gem5 [12] and the required software
changes in the Linux kernel. We use gem5 in the full-system
emulation mode running an up-to-date Debian buster with
our modified Linux kernel 4.19, as shown in Table 3.
Memory. There is no ECC memory in gem5. Therefore, we
first modify the memory controller to extend its memory bus
to 72-bit to simulate ECC DIMMs. We add the integrity in-
formation computation and check to the memory controller
with the latency for the MAC computation and the official
QARMA software implementation from the NIST submis-
sion [7]. The memory model of gem5 does not simulate any
memory flaws like spontaneous bitflips or Rowhammer. To
test CSI:Rowhammer we add an interface to cause corrup-
tions in the DRAM. Similar to related work [58], [15] we do
not use a cycle accurate DRAM model like dramsim3 [46]
or dramsys4 [64], because CSI:Rowhammer does not change
the number, frequency or ordering of DRAM accesses.
CPU. We add a data corruption CPU exception that is raised
by the memory controller if a MAC mismatch is detected,
and the three new instructions for the correction. As gem5
does not support AVX, we use code by Wang et al. [70] that
adds basic support, sufficient for our use.

TABLE 3: The gem5 system used for our evaluation.

Architecture x86-64
CPU Single Core, 3GHz, O3 (Out-Of-Order) CPU

DRAM 2 Channel, 4GB DDR4 2400 8x8
Cache 64 kB L1I, 32 kB L1D, 2MB LLC

gem5 Mode Full System
Operating System Debian Buster with Linux 4.19

Linux. A modified Linux kernel is required to support
the new exception and perform the correction. We add the
exception handler that performs the correction as a search.
As we introduce the new csi_ CPU instructions, there is no
compiler support. Hence, we call them using inline assembly
to insert raw bytes into the machine code directly; for an
example, see Listing 5 in Appendix C.
Limitations. As the secure memory has no impact on the
performance or correction, we do not implement it. The
secure memory is only required to prevent corruption in
the correction code which cannot occur in our simulation.

6.2. Performance Evaluation
To evaluate the performance of CSI:Rowhammer, we first
measure the performance impact without memory corrup-
tions using the PARSEC [11] and SPLASH2x [56] bench-
marks. Second, we estimate the duration of the data correc-
tion in software, depending on the number of bitflips.
Runtime Performance Overhead We evaluate the perfor-
mance impact of CSI:Rowhammer during normal operation
without memory errors for the PARSEC [11] and SPLASH-
2x [56] benchmarks, which cover a wide variety of memory
intensive and non-intensive workloads. We ran the entire
benchmarks and compare the overall time they took with
or without the delay added by CSI:Rowhammer. The per-
formance degradation is caused by the MAC computation
performed on every memory access. We use the MAC
computation durations for 256-bit data (5.13 ns) and 512-bit
data (6.60 ns) from Table 1. The overhead for the different
applications is shown in Figure 5. The geometric mean
overhead over all benchmarks is 0.67% (n = 45, σx̄ =

0.12) on the system with a 5.13 ns delay and 0.74% (n =

25, σx̄ = 0.17) with a 6.6 ns delay. The worst overhead is
3.28% (n = 55, σx̄ = 0.013) and 4.24% (n = 30, σx̄ =

0.017), respectively. This overhead is small in comparison
to the security that CSI:Rowhammer can provide. Figure 7
in Appendix D shows the memory accesses of every bench-
mark. Benchmarks with a high number of memory accesses
also experience a worse performance impact, confirming that
the slowdown comes from the MAC computation overhead.
Simulated Correction Overhead Evaluation We evaluate
the duration of the correction as a search. For data that can
be corrected through other means, e.g., reloading from disk,
any number of bitflips can be corrected in a very short time.
The gem5 simulator is well suited for relative performance
comparisons but not for absolute run time numbers. To
give realistic numbers for the average correction duration
on a modern CPU that implements CSI:Rowhammer, we
simulate the correction algorithm on three physical CPUs.

8



bla
ck

sch
ole

s

bo
dy

tra
ck

ca
nn

ea
l
de

du
p

fer
ret

fluid
an

im
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

ba
rne

s

ch
ole

sk
y fft

lu
cb

lu
nc

b

oc
ea

n cp

oc
ea

n nc
p

rad
ios

ity
rad

ix

vo
lre

nd

wate
r ns

qu
are

d

wate
r sp

ati
al

gm
pa

rse
c

gm
sp

las
h2

x

ge
om

etr
ic

mea
n

0%

2%

4%

0
.0
9

%

1
.9
1

%

1
.9
7

%

0
.4
2

%

0
.0
6

%

0
.7
5

% 0
.5
2

%

0
.1
8

%

0
.2
9

% 1
.3
2

%

0
.1
3

%

0
.2
7

%

3
.2
8

%

1
.2
9

%

0
.0
2

%

2
.2
9

%

0
.0
3

%

0
.0
1

%

0
.3
1

%

0
.7
5

%

0
.6
7

%

0
.5
2

% 2
.5
1

%

1
.2
6

%

0
.5
4

%

0
.1

% 0
.9
2

%

0
.2
8

%

0
.3
8

% 1
.5
6

%

0
.1
7

%

0
.3
3

%

4
.2
4

%

1
.6
8

%

0
.0
3

%

2
.8
3

%

0
.0
3

%

0
% 0
.3
1

%

0
.9
5

%

0
.7
4

%

O
ve

rh
ea

d
5.13ns (256-bit data)

6.60ns (512-bit data)

-2
.0

0% -0
.3

1%

-0
.6

8%

-0
.0

3%-0
.8

4%

-2
.0

0%

-0
.0

1%

PARSEC SPLASH-2x GMEAN

Figure 5: PARSEC and SPLASH-2x benchmarks run in our modified gem5 with two different integrity check delays. The
worst overhead of CSI:Rowhammer is 4.24% (n = 30, σx̄ = 0.017), the geometric mean is 0.67% (n = 45, σx̄ = 0.12) for
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TABLE 4: The number of MAC computations in the best, average, and worst case, based on the flip distribution, see Figure 3.
Followed by the theoretical MAC duration, and the permutation loop durations for three CPUs. The higher MAC or loop
duration is a good estimate for the respective CPU. 256 Data Bits, BC = Broken Connection, ∗Correction in Hardware

Errors # MAC Computations MAC Duration Simulated Bit Permutation Loop Duration
Best Case Average Case Worst Case Average Case Apple M1 Intel i7-1165G7 AMD 5800X

1∗ 17 17 17 11ns - - -
2 528 711 1985 2.43 µs 952 ns 3.68 µs 3.85 µs
3 17 440 33 800 63 520 115 µs 40.2 µs 124 µs 126 µs
4 576 608 1.51 × 10

6
3.94 × 10

6
5.17ms 1.74ms 6.65ms 7.49ms

5 1.91 × 10
7

6.91 × 10
7

1.26 × 10
8

236ms 78.9ms 261ms 293ms

6 6.32 × 10
8

3.07 × 10
9

5.87 × 10
9

10.5 s 3.51 s 12.8 s 14.0 s

7 2.10 × 10
10

1.21 × 10
11

1.88 × 10
11

6.87min 2.30min 9.11min 10.0min

8 6.97 × 10
11

5.72 × 10
12

5.82 × 10
12

5.44h 1.70h 6.11h 6.74h
BC∗ 1 1.125 32 5.77ns - - -
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Figure 6: Correction time from Table 4 - MAC Duration.
One bitflip is corrected in hardware, the exception overhead
for the software correction is 223 µs. The ECC correction
time is dependent on the CPU and varies greatly. MAC and
parity bitflips are corrected with one MAC computation and
therefore not shown.

First, we implement our correction as a search algorithm
with a memcmp instead of the MAC comparison; we call
it bit permutation loop. Then we run a Monte Carlo sim-
ulation 10 000 times to get the average number of MAC
computations per number of bitflips and the duration of the
bit permutation loop on all three CPUs.

Table 4 shows the results. The MAC computation du-
ration is calculated by multiplying the number of MAC
computations with the duration of a single MAC compu-
tation divided by the throughput (see Table 1). Under the

TABLE 5: MAC strength with approximate equality for
256 bit. p is the number of bit permutations tried to correct
the data. d is the number of flips allowed to be different in
the MAC for the approximate equality. The MAC strength is
a result of d. CSI:Rowhammer is secure because the strength
is always higher than log2(p).

Data Flips log2(p) d MAC Strength

5 26.0 3 41.2
6 31.5 2 45.4
7 38.8 1 50.2
8 42.4 0 56.0

assumption that the MAC computation is performed on an
AVX floating-point execution unit, the MAC computation
can run in parallel to the bit permutation loop that uses
different execution units, and their times do not add up.

If the simulated bit permutation loop without the MAC
computation is faster than the combined MAC computation,
we use the MAC computation duration as a estimate for the
correction time, otherwise, bit permutation loop duration.
The Apple M1 could, because of its large number of ALUs,
keep more than one QARMA cipher block busy, as it is
limited by the MAC computation duration. The other CPUs
can almost keep the QARMA cipher block busy. For 512-bit
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data, correcting 7 bitflips requires 1.41 × 10
13 MAC com-

putations and takes 35 hours and for 6 bitflips 28minutes.
We use our gem5 prototype to measure the overhead

caused by the exception, which is 223 µs. In Figure 6,
we add this overhead to the durations from Table 4. The
correction time of ECC memory is highly dependent on the
CPU. Kwong et al. [43] measured access times 5 orders of
magnitude larger on an error. Cojocar et al. [16] measured
accesses 500 times as well as only 1.01 times larger. To
compare these numbers with our durations, we multiplied
them with a typical DRAM access time of 113 ns [18].

6.3. DRAM Organization & Energy Cost
Unlike other memory integrity protection methods like
IVEC [28] or Synergy [58], CSI:Rowhammer requires only
a single memory access to get the data and integrity informa-
tion. Memory organization in the form of DRAM channels,
therefore, has no impact on the performance. The QARMA
authors did not analyze the energy cost, reasoning that the
single memory access dominates the energy consumption
and that a few thousand gates are nearly negligible in mod-
ern CPUs [6]. Similar to Qualcomm’s pointer authentication,
we also use the QARMA cipher in combination with a
memory access and can apply the same argument. The added
SRAM has a fraction of the cache capacity on a typical
modern CPU and, therefore, negligible energy cost as well.

6.4. CPU and DRAM Area Estimation
In this section, we evaluate the area requirements in the CPU
and DRAM to implement CSI:Rowhammer.
CPU Die Area. The components required are a MAC
circuit in the memory controller, one per core, and a secure
SRAM of 4 pages (16 kB). The SRAM is not a hard
requirement, and it can be omitted with a slight decrease
in system reliability without compromising security.

We estimate the SRAM size for TSMC’s 7 nm pro-
cess [71], because the area of QARMA is also provided
for a 7 nm process [6]. One TSMC 7nm SRAM cell
has 0.027 µm2 [71], resulting in an area for 4 pages of
0.027 µm2 ⋅ 8 ⋅ 4096 ⋅ 4 = 3539 µm2. With the area of one
latency optimized QARMA5-64-σ0 [6] block of 1238.1 µm2,
the overall area requirement for a 4-core CPU is 3539 µm2+
5 ⋅ 1238 µm2

= 9729 µm2. This is approximately 0.0067%
of the Tiger Lake CPU die with comparable feature size
and an area of 146.1mm

2 [17], a lot less than the 0.5%
and 0.6% of Blockhammer [73] and Graphene [55].
DRAM Area. On systems already equipped with ECC
memory, CSI:Rowhammer does not add any DRAM area.
For systems without ECC memory, CSI:Rowhammer adds
12.5% (DDR4) or 25% (DDR5) area.

6.5. Cost vs. Device Vulnerability
Previous works report that similar devices show high vari-
ance in Rowhammer susceptibility [26], [34], [40], [44].
Kim et al. [40] used DDR3 memory and observed a very
low number of multi-bit errors (1.9%), CSI:Rowhammer
corrections would have a minor performance impact. More

recently, Kim et al. [36] found that first-generation DDR4
DRAM is four times as vulnerable. The higher rate of multi-
bit errors resulting from it can cause longer correction times,
but the chance of uncorrectable errors is still low.

Recent generations of (LP)DDR4 memory show a sig-
nificantly higher susceptibility to Rowhammer. Hassan et al.
[26] found up to 7 flips in a single 64-bit data word. The
worst cells Kim et al. [36] found, fail after less than 5000
hammers; this memory requires TRR, see Section 8.1.

6.6. MAC Security Evaluation
We now evaluate the security and correctness of the MAC.
Construction. The PAM construction with tweakable block
ciphers is proven to be secure [57]. The usage of the physical
address as the tweak for the MAC makes targeted hammer-
ing of the data and MAC infeasible (see Section 6.7).
Approximate Equality. We can precisely determine the
security loss due to the approximate equality check. If we
consider an n-bit MAC and allow approximate equality with
up to d errors, then the success probability of a single
forgery attempt increases from 2

−n to 2
−n ∑d

k=0 (nk), cor-
responding to a security loss of log2(∑d

k=0 (nk)) bits. As an
example, consider n = 56 and d = 3, where the security
degrades from 56 to 56−14.8 = 41.2 bits. d is reduced with
a higher number of data bitflips, as shown in Table 5, and is
never higher than d = 3. For 512-bit data, d = 3 for 4 flips
in the data and reduced to d = 0 for 7 flips, the maximum.
MAC Leakage. Bitflips in the MAC are corrected with
approximate equality, so there is no relation between the
correction time and flipped MAC bits. A timing side chan-
nel can leak the location of a flipped bit in the data. A
RAMBleed-like attack could, in theory, be used to leak the
MAC and virtual machines can compute the MAC. However,
the dependency of the MAC on the physical address makes
an attacke, even then, infeasible, see Section 6.7.

6.7. Detection and Correction Security Evaluation
In this section, we evaluate the security of CSI:Rowhammer
in regards to data corruption, protection against a Rowham-
mer attack, erroneous corrections, and uncorrectable errors.
Bitflip Location. The location of Rowhammer bitflips and
memory errors within the data or integrity information has
no impact on the error detection capabilities of CSI:Row-
hammer. Therefore, CSI:Rowhammer can guarantee the de-
tection of all Rowhammer attacks and memory errors with
a very high chance and mitigate all attacks, as shown in the
following paragraphs. If no advanced correction method is
applicable, the correction as a search can correct up to 8
bitflips in 256-bit data if there are no bitflips in the integrity
information and up to 5 bitflips in the data with 3 bitflips
in the MAC and 1 flip in the parity bits (see Section 6.6).
Single Bit Data Corruption. We use the MAC and the
parity bits to verify the integrity. Therefore, 1 bitflip can
never lead to a silent data corruption, if it creates a second
preimage with the same MAC, the parity bit check still fails.
Silent Data Corruption. Every system is exposed to
bitflips. We evaluate the frequency of silent data corruptions
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caused by naturally occurring bitflips that cause a second
preimage. There must be at least two flips in 256 or 512 bits
of data for the possibility of a silent corruption. With a se-
cure MAC, the probability of producing a second preimage
is independent of the number of bitflips. Previous studies
only report multi-bit errors per 64-bit ECC data word.
However, multi-bit errors are relatively rare, so there is a
low chance of them piling up in a 256 or 512-bit data block.
Therefore, we can take the frequency of multi-bit errors ob-
served in other studies also for this evaluation. Additionally,
we take the worst reported FIT by Schroeder et al. [59] of
70 000 and distribute them uniformly over the memory to
get the probability of additional multi-bit errors in the data.
On a double error, 3969 MAC computations are performed
in the worst case. The overall Silent Data Corruption rate
of CSI:Rowhammer is less than once per 109 billion years.
Random Rowhammer Attack. We evaluate the probability
of an attacker finding a second preimage by randomly
hammering data. As a single bitflip is always detected, an
attacker must flip at least two bits in 256 or 512 bits. If flips
did not produce a second preimage, the correction is run by
the OS, which takes time exponentially corresponding to the
number of flips. An attacker flipping two bits is the best case
for finding a second preimage as quickly as possible. In a
very optimistic scenario for the attacker, two bits always flip
after hammering a page for two refresh intervals or 128ms.
The attacker can either hammer a new location containing
different data or change the victim data after every hammer.
In this scenario, the probability of finding a second preimage
after hammering for one year straight is 9.75 ⋅ 10−5%.
Targeted Rowhammer Attack from a Virtual Machine.
We evaluate if it is possible for an attacker to create valid
data and integrity information in a victim row with Row-
hammer. For an attacker VM it would be possible to com-
pute the MAC for victim data, free the row and hammer it
after a victim VM or the host allocated it. The usage of the
physical address as a tweak makes this attack infeasible:

In short, an attacker cannot construct an aggressor row
that has both, matching data and checksum to the intended
victim row data, which is a requirement stemming from the
data dependency of Rowhammer (see Section 2.2).

In more detail, there are two options for an attacker:
1) Flip the victim data to a second preimage without chang-

ing the MAC: The attacker must find an exploitable
second preimage of the victim row data and a second
preimage of the aggressor row data that does change the
victim data but not the victim MAC.

2) Flip both data and MAC: The attacker has to find aggres-
sor data that changes the victim data to be exploitable and
has a MAC that changes the MAC in the victim row to
correspond to the new victim data.

Finding the required second preimages for the victim and/or
aggressor rows is computationally infeasible. Additionally,
most modern DRAM requires double-sided hammering to
flip bits, doubling the number of data and MAC combina-
tions for the aggressor rows an attacker must find [22], [34].
For half-double Rowhammer the near and far aggressors

must contain the correct data for it to succeed, quadrupling
the computational work [41].

Finally, for a second preimage to exist, on average 41.2
bits (see Table 5) must be flippable in the victim data. This
makes the attack rather hypothetical, as it is way beyond
the amount of bit flips we observe in DRAM today and
would render the DRAM module likely unusable for most
tasks. Additionally, these on average 41.2 changed bits must
still be valid data that is useful for the exploit, so that the
attacked application or kernel does not crash and behaves
in the way anticipated by the attacker.

Highly Vulnerable DRAM. The number of bitflips does
not change the detection guarantees of CSI:Rowhammer. A
high number of flips can cause a denial of service, but cannot
be exploited. The same is true if the memory chip that stores
the integrity information is very vulnerable to Rowhammer.
It increases the chance of uncorrectable errors and cases
where many flips in the MAC look like uncorrectable data
errors, but the error detection is always guaranteed.

Erroneous Correction. During the correction, the operat-
ing system computes many MACs with different data, each
of which could be a second preimage. In the worst possible
case, 8 bits flip in the last tested locations of the same
last parity bit. This leads to the maximum number of flip
permutations: the worst-case number in Table 4 times 2, i.e.,
1.164×1013, and log2(1.164×1013) = 43.4 is lower than the
width of our MAC n = 56, see Table 5. The probability p of
finding a second preimage is 0.0161%. This correction takes
approximately 6 hours. To get a chance of 50%, the attack
takes log(0.5)

log(1−0.000161) ⋅ 6 h = 1076 days. The outcome of this
correction is impossible to predict for the attacker, and thus
of only very limited use. With 512-bit data, only 6 flips are
correctable in reasonable time; 7 bits take approximately 92
hours in the worst case. The number of permutations for
7 flips, in this case, is 5.035 × 10

13. The probability p of
finding a second preimage is 0.0699%.

Uncorrectable DRAM Errors. In Section 2.1, we sum-
marize the findings of three studies on DRAM errors in
large-scale systems. From these numbers, it is possible to
make predictions about the correction capabilities. Bautista-
Gomez et al. [9] give insight into the number of flips in
multi-bit errors. Less than 0.002% of multi-bit errors have
more than 8 bits flipped and are therefore not correctable as
a search. According to Hwang et al. [29], 1.34% of nodes
in one system they observed had at least one Chipkill error
in 583 days. These errors are not correctable as a search
but, e.g., by reloading pages from disk and always detected.

7. Related Work

There are many proposals for Rowhammer mitigations and
data integrity protection but with little overlap. All presented
Rowhammer mitigations were already broken by follow-
up work. Data integrity methods are reliable at detecting
bitflips, but either have a significant performance impact or
cannot correct bitflips caused by Rowhammer.
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7.1. Rowhammer Mitigations
Rowhammer mitigations hinder specifically the flipping of
bits or the exploitation of Rowhammer bitflips. Gruss et al.
[23] described Rowhammer mitigations in three categories:
Elimination. TRR is a Rowhammer mitigation in recent
DRAM modules. It counts the accesses to rows and refresh
adjacent rows if the accesses exceed a pre-configured value.
TRR can be bypassed in two ways: by multi-sided hammer-
ing [22], [34] and by half-double hammering [41]. It is also
possible to detect Rowhammer attacks with frequent element
analysis in the DRAM data streams [55], [39]. They have
a chip area overhead that is dependent on the number of
DRAM ranks and is higher than that of CSI:Rowhammer.
Neutralization. While not preventing bitflips, some mitiga-
tions prevent Rowhammer attacks by physically distancing
rows. ZebRAM [42] isolates all rows by making only every
second row accessible to programs. The rows in between are
used as integrity-checked swap space. ZebRAM can be cir-
cumvented with half-double hammering [41]. Brasser et al.
[14] physically distance kernel and userspace. CSI:Rowham-
mer neither introduces such physical distancing nor can it
be bypassed by known or future hammering patterns.
Detection. Irazoqui et al. [32] presented MASCAT, a static
code analysis tool to detect Rowhammer attack code. Oth-
ers used performance counters to detect microarchitectural
attacks (e.g., Rowhammer) [27], [25], [75]. However, they
are limited to specific assumptions about Rowhammer and
have detection rates far below those of CSI:Rowhammer.

7.2. Data Integrity Protection
Data integrity protection is a very long-studied topic. How-
ever, no solution specifically focuses on Rowhammer [28],
[58], [15], [74], [54], [38], [37]. Instead, they focus primar-
ily on sophisticated attacks requiring physical access to a
device like cold-boot attacks or attacks on the memory bus,
enabling replay, relocation, and data substitution and often
include encryption. These protections are required, e.g., in
secure enclaves like Intel SGX or ARM TrustZone, where
security is the primary aspect. They come, however, with a
significant performance impact on memory-intensive work-
loads [58]. CSI:Rowhammer manages the balance between
security and performance better than any other DRAM
integrity verification method by focusing on data modifi-
cations caused by single-event upsets and Rowhammer.
ECC and Chipkill. ECC and Chipkill can only detect
a certain number of flips, making them unsuitable as a
Rowhammer countermeasure. Chipkill significantly impacts
DRAM performance or memory overhead depending on the
used protection scheme [20]. All of the schemes described
by Dell et al. [20] are additionally not able to correct
multiple flips if they come from different chips, which
is common for Rowhammer. CSI:Rowhammer can correct
errors from different chips, but not from a faulty chip. All
three can correct errors from a faulty contact.

The correction time of typical single-bit errors and
faulty contact errors is similar between CSI:Rowhammer,
ECC, and Chipkill. For systems that currently have ECC

or Chipkill deployed, performance does not change with
CSI:Rowhammer when these errors happen.
IVEC (Integrity Verification with Error Correction).
Huang et al. [28] proposed IVEC, a memory integrity ver-
ification method that includes error correction as a search
similar to CSI:Rowhammer. IVEC uses an integrity tree and
a GMAC with split counters to protect against data modi-
fication and replay, relocation, or substitution attacks. The
integrity tree requires multiple memory accesses for every
integrity verification, which has a significant performance
impact. IVEC does not use ECC DRAM to store the MAC.
Synergy. Synergy by Saileshwar et al. [58] is similar to
IVEC but uses ECC DRAM to reduce memory accesses.
Parity information is stored at another location for error
correction but is only retrieved on corruption. Encrypting the
data also protects against replay, relocation, or substitution
attacks. The overall performance overhead is significantly
higher than CSI:Rowhammer’s. Synergy can correct 8 bits
in 64-bit data if they come from the same memory chip but
only detect them if spread over multiple chips.
MemGuard. With MemGuard, Chen et al. [15] verify the
data integrity by computing a write-log hash and a read-
log hash with all accesses. The operating system checks the
integrity of the whole DRAM periodically by comparing the
write-log hash with the read-log hash. If they do not match,
the OS resets the memory state to a prior checkpoint causing
a delay of seconds. Frequently induced bitflips would halt
the system as it could not progress to the next checkpoint.

8. Discussion
In this section, we discuss additional performance improve-
ments, compatibility with existing technologies, and possi-
ble race conditions that can occur during the data correction.

8.1. Compatibility with other Technologies
CSI:Rowhammer and TRR TRR cannot provide any
security guarantees and was already broken in multiple
ways [22], [41]. Most recently, Jattke et al. [34] were able
to flip bits in all 40 of their recently-purchased DDR4
DIMMs with TRR. TRR can therefore not be considered
even remotely a secure Rowhammer mitigation. When used
in combination with CSI:Rowhammer, it provides all secure
guarantees, while TRR can provide a performance gain and
reduce the risk of DoS by reducing the number of bitflips.
Compatibility with Memory Encryption. If used together
with memory encryption, the csi_load instruction returns
the encrypted data. The correction as a search is then
performed on the encrypted data and written back with the
csi_xchg instruction. If the corrupted data could be recon-
structed by, e.g., reading it from disk, the operating system
writes the data back with a fourth instruction similarly to
csi_xchg that encrypts the data in the memory controller.
Backward Compatibility and Upgrade Path. An addi-
tional benefit of CSI:Rowhammer is its backward compati-
bility. It could be controlled by an MSR, with a fall-back to
ECC, facilitating hardware upgrades, as software can follow
slower and is not required to support CSI:Rowhammer at all.
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Compatibility with Virtualized Environments. CSI:Row-
hammer can be used in virtualized environments as de-
scribed in Sections 4 and 5. Virtual machines do not have
to support CSI:Rowhammer. The MSR to activate it is
simulated by the host that, therefore, knows which VM
wants to use or supports CSI:Rowhammer. For VMs that
did not activate CSI:Rowhammer or where security is of
uttermost importance, the host corrects all flips as a search.
For VMs that did activate it, the host forwards the exception
to the VM, allowing the VM’s OS to perform all possible
operations in the advanced correction, like reloading data
from disk. Not requiring every VM to support CSI:Rowham-
mer greatly eases the upgrade path of virtual environments,
because only the host must be upgraded in the first step.

8.2. Possible Improvements
Memory Scrubbing. During phases with low memory bus
load, the memory controller performs memory scrubbing
by checking the MACs of data. Memory Scrubbing enables
the detection and correction of data corruptions prior to the
access, increasing the overall system performance. It also
prevents the build-up of bitflips that exceed the maximum
number of correctable flips, increasing the system reliability.
Speculative Data Forwarding. When accessing data from
the DRAM, the memory controller first reads the bytes
required by the CPU, and afterward, the missing bytes to
fill the cache line. However, the integrity check requires
the entire cache line to compute the MAC. The CPU could
continue execution after receiving the first word transiently
until the integrity is checked. If the integrity check passes,
CSI:Rowhammer has no impact on performance. Transiently
executing unverified code or data could impact the security
of the system. Shi et al. [61] and Lehman et al. [45] already
suggested solutions for safe speculative execution.

8.3. CSI:Rowhammer and DRAM Scaling
We believe that because of the continuously increasing
susceptibility of DRAM to Rowhammer [53], [36], it is
crucial to have a solution like CSI:Rowhammer that trans-
lates DRAM error rates to performance without sacrificing
security. DRAM is optimized for the optimal ratio between
density and performance. If a solution like CSI:Rowhammer
was widely used today, increasing the density too much
would degrade the performance substantially, because of
very frequent bitflips, before the density becomes so high
that the bitflips can be exploited. DRAM cannot be opti-
mized anymore without taking security into consideration.

8.4. Race Conditions during Data Correction
CSI:Rowhammer allows other tasks and multiple corrections
to run simultaneously. We discuss the possible scenarios that
could arise and how we prevent any race condition.
Read While Correction. If one task is correcting a corrup-
tion and another is accessing the same memory location, a
lock in the exception handler prevents the concurrent correc-
tion of the same flip. In the rare case that both handlers resort
to the nested exception handler, concurrent correction cannot

be prevented. If the first handler finishes the correction and
modifies the data, the csi_xchg instruction prevents the
second handler from overwriting the new data with old data.
Write While Correction. If a task uses streaming or
non-temporal stores, an uncached memory location can be
written without loading into the cache. This can overwrite
corrupted data in the DRAM that is currently corrected.
When the correction is finished, csi_xchg detects that the
data is already modified and does not overwrite it.
Corruption While Correction. Data may become more
corrupted while a correction of this data is running. In that
case, the correction finishes but does not write the corrected
data back because the csi_xchg detects a change. After
returning from the exception, another corruption exception
is raised. This is a disadvantage but outweighed by the ad-
vantages the csi_xchg has in the other cases. A corruption
can also happen in the advanced correction code while it is
de-scheduled. This causes a corruption exception when it is
scheduled again. The error is corrected as a search from the
secure memory, and the initial correction is continued.
NMI During Corruption Exception. The exception mech-
anism follows a very similar semantic to the page fault
mechanism and can be paused and unscheduled without a
problem. The NMI can cause another corruption exception
due to flips in the NMI handler. The nesting of corruption
handlers is detected with the nesting bit, and a correction
as a search is performed. Frequently recurring NMIs, where
the corrupted handler causes a corruption exception, could
hang the system, similar to combinations of PFs and NMIs.

9. Conclusion
CSI:Rowhammer is a principled hardware-software co-
design against Rowhammer. Our low-latency lightweight-
cryptographic MAC brings cryptography-grade integrity
protection, detecting any number of bitflips up to the
strength of the cryptographic MAC. Our software-level cor-
rection routine takes less than 1 second to correct 5 bitflips
and adds great flexibility to the correction. We implemented
CSI:Rowhammer as a proof-of-concept in gem5 and Linux.
We observe a 0.74% latency overhead and no memory
overhead over off-the-shelf ECC-DRAM, showing the prac-
ticality of our approach under normal conditions. Even under
attack, CSI:Rowhammer maintains a low latency, with the
ability to correct a single bitflip in less than 20 ns, compared
to up to 63 µs for regular ECC-DRAM as well as errors from
faulty DIMM contacts. This shows that CSI:Rowhammer
should be deployed in future processors.
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Appendix A.
Correction as a Search Pseudocode
Pseudocode of parts of the correction as a search algorithm
required to correct the flips in Figure 3a. The comments are
based on this correction attempt.

1 bool correction_as_a_search(data, paddr, MAC, parity)
2 {
3 // maybe the error was transient
4 computed_mac = csi_mac(data, paddr);
5 if (popcount(MAC ˆ computed_mac) < 4) {
6 return 1;
7 }
8

9 // we have two mismatching parity bits
10 mmpb =
11 compute_mismatching_parity_bits(data, parity);
12 mmpb_count = count(mmpb);
13 min_flips = mpb_count;
14

15 if (min_flips == 0) {
16 min_flips += 2; // one double flip
17 }
18

19 if (min_flips == 1) {
20 ...
21 }
22

23 if (min_flips == 2) {
24 if (mpb_count == 0) {
25 // one double flip
26 ...
27 }
28

29 if (mpb_count == 2) {
30 // our first guess are two single flips
31 if (perm_two_single_flip(data, paddr, mpb))
32 return 1;
33 }
34

35 // We do not find the correction
36 // Add a double flip to our guess
37 min_flips += 2;
38 }
39

40 if (min_flips == 3) {
41 ...
42 }
43

44 if (min_flips == 4) {
45 if (mpb_count == 0) {
46 // two double flips
47 ...
48 }
49

50 if (mpb_count == 2) {
51 // two single flips, one double flip
52

53 // try all possible double flip permutations
54 // for all four parity bit blocks
55 for (p = 0; p < 4; p++) {
56 for (i = p * 4; i < (p + 1) * 4; ++i) {
57 flip_bit(data, i);
58

59 for (j = p * 4; j < i; ++j) {
60 flip_bit(data, j);
61

62 // include all single flip permutations
63 // from the first guess
64 if (
65 perm_two_single_flip(data, paddr, mpb))
66 return 1;
67

68 flip_bit(data, j);
69 }
70 flip_bit(data, i);
71 }
72 }

73 }
74

75 if (mpb_count == 4) {
76 // four single flips
77 ...
78 }
79 }
80

81 return 0;
82 }
83

84 bool perm_two_single_flip(data, paddr, mpb) {
85 for (i = mpb[0] * 4; i < (mpb[0] + 1) * 4; ++i)
86 {
87 // flip bit at index i in data
88 flip_bit(data, i);
89

90 for (j = mpb[1] * 4; j < (mpb[1] + 1) * 4; ++j)
91 {
92 flip_bit(data, j);
93

94 // Check if we found the correction
95 computed_mac = csi_mac(data, paddr);
96 if (popcount(MAC ˆ computed_mac) < 4) {
97 return 1;
98 }
99

100 flip_bit(data, j);
101 }
102 flip_bit(data, i);
103 }
104

105 return 0;
106 }

Listing 3: Correction as a search pseudocode.

Appendix B.
csi_xchg Pseudocode
The csi_xchg instruction is used to write the corrected
data back into the memory without overwriting changed or
already corrected data (see Section 4.7).

1 int csi_xchg(rx phys_addr, ZMM old_data, rx old_mac,
2 ZMM new_data) {
3

4 ZMM curr_data, rx curr_mac = csi_load(phys_addr);
5

6 if (curr_data == old_data && curr_mac == old_mac) {
7 *phys_addr = new_data;
8 return 1;
9 }

10 return 0;
11 }

Listing 4: Pseudecode of the csi_xchg instruction.
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Appendix C.
Inserting Raw Bytes into Code
Listing 5 shows how to invoke our instruction set extension
without the need for a compiler change by directly placing
the byte sequence in the binary.

1 asm volatile(
2 "vmovdqu64 %1,%%zmm0 \n\t"
3 "mov %2,%%rax \n\t"
4 ".byte 0x62, 0xf1, 0xfe, 0x48, 0x6e, 0xc1 \n\t"
5 : "=m"(mac)
6 : "m"(*data), "m"(address)
7 : );

Listing 5: Calling the custom csi_mac instruction. It takes
the data and the physical address as an argument and returns
the computed MAC.

Appendix D.
Benchmark DRAM Accesses
Figure 7 shows the number of DRAM accesses for the gem5
benchmarks of Figure 5. We observe a direct correlation be-
tween the performance overhead and the number of DRAM
accesses due to the added latency of the MAC.
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Figure 7: The number of memory accesses that miss the
caches. The performance impact is dependent on this num-
ber of memory accesses, but also on how well out-of-
order execution prevents stalling while waiting for a value
or instruction from memory for the different instruction
streams of the benchmarks.

Appendix E.
Correction Procedure Flowchart
Figure 8 shows the correction procedure from Section 5.4
as a flow chart.
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Figure 8: A flow chart depicting the advanced correction
procedure that is run if no nesting of the corruption ex-
ception handler is detected. It is not in the secure memory
because it accesses several other kernel resources.
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