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Abstract

In this thesis, we present a novel Rowhammer exploit that uses a new set of techniques
to attack recent of the shelf devices with active Rowhammer countermeasures reliably.
Rowhammer is a hardware bug that breaks memory isolation by modifying memory
locations that are not accessible to the attacking process. We categorize Rowhammer
countermeasures proposed and implemented by researchers and manufacturers and ex-
plain their strengths and weaknesses. To study existing exploits we define four steps for
a successful attack, memory preparation, data preparation, hammering, and exploitation
for which many exploits use unique techniques that we describe in detail.

We mainly focus on recent Chromebooks, for which we developed novel solutions for
all four previously defined exploit steps. For memory preparation we combine a timing
side channel on the DRAM with the DRAM’s mapping functions to detect contiguous
memory areas and reverse-engineer physical address bits without requiring huge pages.
To allow page table spraying in the small virtual address space of our target we use
spray children for data preparation. Our target device uses DRAM protected with TRR
and ECC to defend against Rowhammer. We use the novel half-double Rowhammer
pattern to break TRR in the hammering step. Finally, we increase the stability of the
exploitation with robust bit flip verification via speculative execution.

With these novel techniques our exploit is a real threat to Chrome OS’s security. It can
compromise a fully patched Chrome OS system in under two hours and gain full read
and write access to the system’s memory.

Keywords: Rowhammer, exploit, security, side channel, speculative execution, Linux,
Chrome OS
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Kurzfassung

In dieser Arbeit präsentieren wir einen neuartigen Rowhammer Exploit der mit Hilfe
neuer Techniken ein Chromebook mit aktivierten Rowhammer Gegenmaßnahmen zu-
verlässig übernehmen kann. Rowhammer ist eine Sicherheitslücke in der Hardware die
die Modifikation von Speicherstellen erlaubt auf die der attackierende Prozess keinen
Zugriff hat und somit die Speicherisolation untergräbt. Wir kategorisieren Rowhammer
Gegenmaßnahmen die von Forschern und Herstellern vorgeschlagen und implementiert
wurden und diskutieren Stärken und Schwächen dieser. Zur Untersuchung existierender
Exploits definieren wir vier Schritte die für eine Attacke notwendig sind, Speichervorbere-
itung, Datenvorbereitung, Hämmern, Ausnutzung. Viele Attacken verwenden einzigartige
Techniken für diese Schritte die wir im Detail beschreiben.

Für unseren Exploit haben wir auch vier neue Lösung für die vier Schritte entwickelt um
unser Chromebook attackieren zu können. Für die Speichervorbereitung kombinieren
wir eine zeitbasierte Seitenkanalattacke zusammen mit den DRAM Addressierungs-
funktionen unseres Chromebooks um zusammenhängende Speicherbereiche zu erken-
nen und physikalische Addressbits extrahieren zu können. Um Page-Table-Spraying
im kleinen virtuellen Addressraum unseres Chromebooks zu ermöglichen verwenden
wir Spray-Children zur Datenvorbereitung. Der Speicher des Chromebooks verfügt
über die Rowhammer Gegenmaßnahme TRR. Wir verwenden die neuartige Half-Double
Rowhammer Technik um TRR beim Hämmern zu umgehen. Am Ende verwenden wir
zum Ausnutzen der Speichermodifikation robuste Bitflip Verifikation durch spekulative
Ausführung, um die Attacke stabiler zu machen.

Mit Hilfe dieser neuartigen Techniken ist unser Exploit ein reale Bedrohnung für die
Sicherheit von Chrome OS. Er kann ein komplett gepatchtes Chromebook in unter zwei
Stunden übernehmen and vollen Schreib- und Lesezugriff auf den Speicher erhalten.

Stichwörter: Rowhammer, Attacke, Sicherheit, Seitenkanalattacke, Spekulative
Ausführung, Linux, Chrome OS
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Chapter 1

Introduction

Rowhammer is a widespread security issue caused by the perpetual pressure to miniatur-
ize electronic devices that was first discovered by Kim et al. in 2014 [52]. Rowhammer
allows an attacker to intentionally cause disturbance errors in the DRAM to flip bits
that are not part of its memory. Manufacturers knew about the existence of disturbance
errors in the DRAM prior to the findings of Kim et al. [52] but it was only viewed as a
reliability and not a security issue [52]. The ever higher demand in memory density and
lower power consumption leads to an ongoing miniaturization of DRAM cells which in
turn increases the vulnerability to Rowhammer [65].

A year after the discovery, Seaborn et al. [75] presented the first two Rowhammer exploits
showing that Rowhammer is a real security threat that can be used to gain kernel
privileges. Since then, numerous exploits and defenses were developed. The spectrum of
targets attacked by these exploits spans nearly all computer systems. They were shown
to be viable from Javascript, to attack mobile phones, break out of virtual machines,
read memory, attack remotely over the network, use Intel SGX for hiding and many
more [21, 27, 29–31, 41, 55, 58, 72, 75, 78, 80]. Also, the countermeasures that were shown
throughout the years to defend against Rowhammer utilize many different techniques,
from the detection and prevention of Rowhammer attacks in software or hardware to the
physical isolation between the kernel and userspace memory [20,25,29,32,42,45,51,52,54].
However, every known defense was broken by at least one published exploit, therefore
the problem of Rowhammer remains unsolved.

In this master’s thesis, we assess the current situation regarding the threat of Rowham-
mer, with its ongoing conflict between new countermeasures and exploit techniques. To
show that the problem is not solved yet, we present a novel Rowhammer exploit to
successfully attack a recent device running the operating system Chrome OS [3]. We
discuss the latest challenges of mounting such an attack and provide solutions to all of
them. Finally, we try to conclude our work with an optimistic outlook on the future.

1



Chrome OS does not allow the user to run native applications directly on the system
as it was initially designed to be a web-browser-only operating system [67]. It does
however support Android apps fully since 2016, which can be used to run native code
with the Android NDK [35]. Android apps run inside Linux containers directly on top
of the Chrome OS kernel [33].

The LPDDR4x memory in our target device uses ECC error correction and the Rowham-
mer countermeasure TRR. ECC hinders memory templating because it makes bit flips
partially dependent on the content of the victim row. To counter this problem, we use a
new approach to hammer page tables without requiring any memory templating. TRR,
on the other hand, was supposed to solve Rowhammer, but Frigo et al. [31] discovered
that it could be broken with many-sided Rowhammer and Qazi et al. [71] presented
another method called half-double Rowhammer. Our exploit is the first to utilize this
novel half-double Rowhammer pattern.

Physically contiguous memory is essential for the half-double pattern, and our exploit
supports two ways to obtain it. The first one is to use huge pages which are enabled
in Chrome OS and also the Android container. This is trivial but can also easily be
deactivated. The second technique uses a timing side channel together with the DRAM
mapping functions to detect contiguous memory. It can further recover additional phys-
ical address bits to circumvent row scrambling.

Hammering the DRAM can have undesired consequences that can kill our exploit. To
prevent this, we use a novel technique to verify bit flips with speculative execution. After
obtaining full access to the whole memory, we dump the memory to disk in a matter of
seconds, to scan it for private information or secret keys in a later step.

Chapter 2 provides the fundamental knowledge the following chapters of the thesis
build upon. It gives an overview of the DRAM, which is the target of the Rowhammer
attack. To understand Rowhammer, knowledge about the structure of the DRAM,
its operation and the design of the DRAM cells are an advantage. The chapter also
describes the basics of virtual memory and how it is managed with page tables. It then
gives an overview of Rowhammer, its physical root cause and how to trigger it from
software. The final section covers speculative execution, which we use for our robust
bit-flip verification.

Chapter 3 gives an overview of existing Rowhammer countermeasures. It categorizes
them based on their method used to defend against Rowhammer: detection, neutraliza-
tion and elimination.

Chapter 4 explains in detail the different techniques and concepts used by various
Rowhammer exploits. The chapter describes different ways to obtain contiguous memory
and how to bypass the CPU caches depending on available memory mapping options and
instructions. We describe the different hammer patterns with their respective properties
and provide details on ECC and TRR memory. We finally lay out different ways to use
Rowhammer bit flips for privilege escalation and sandbox escapes.
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Chapter 5 presents our aforementioned novel half-double Rowhammer exploit targeting
Chrome OS. We discuss the different options to run applications on Chrome OS and our
choice of an Android app for our exploit. We outline the challenges our exploit is facing
and detail our solution to all of them. Finally, we evaluate the real-world danger of the
exploit and discuss possible countermeasures.

Chapter 6 provides a conclusion and summary of this work.
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Chapter 2

Background

In this chapter we, provide the necessary background knowledge to understand Rowham-
mer exploits and defenses. Section 2.1 covers DRAM, the main memory of every com-
puter and the target of the Rowhammer attack. The section details the DRAM’s struc-
ture, the inner workings of a single cell and the interface between CPU and DRAM.
Section 2.2 covers the CPU caches. They are essential for the performance of modern
computers but also an obstacle for Rowhammer. They can additionally be used as a
side channel for, among others, speculative-execution attacks. Another essential build-
ing block of a computer’s memory system is virtual memory, which is explained in more
detail in Section 2.3. It is the basis for process isolation in every OS and an attack
target in some Rowhammer exploits. Section 2.4 links all previous sections to explain
the Rowhammer vulnerability in detail, including recent findings regarding the electrical
cause for the vulnerability, how it is triggered and the obstacles preventing it from being
triggered. Finally, Section 2.5 covers speculative execution, a performance optimiza-
tion present in all modern CPUs and the basis for the Spectre CPU vulnerability [53].
Though not directly linked to Rowhammer, it but can be used in exploits to improve
the chances of success.

2.1 Dynamic Random Access Memory (DRAM)

DRAM is typically used as the main memory of every computer, containing all actively
running programs and their data, including the operating system. The reason for its wide
usage is its high memory density paired with low production costs. The high memory
density, which is ever more important to combat the increasing memory consumption
of present-day software, is achieved by storing a single bit in a cell that consists of only
two components, a transistor and a capacitor (cf. Section 2.1.2).

4



bank 7 / 15*

bank 2

bank 1

bank 0

Figure 2.1: A DRAM rank is structured into banks.
DDR3 memory has 8 banks, DDR4 memory has 16 banks divided into
groups. The dotted squares symbolize the memory chips.
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Figure 2.2: The DRAM cells are structured in a grid.

2.1.1 DRAM Structure and Operation

DRAM consists of billions of memory cells. To efficiently address, read and write them,
the memory is structured into multiple levels. The highest level is a DIMM, the lowest
a cell that holds a single bit.

A computer can have multiple DIMMs connected to the motherboard. Every physical
side of these modules is called a rank. DIMMs can have memory chips on one or both
sides and therefore one or two ranks. A rank is split into multiple banks as shown in
Figure 2.1. In DDR4 memory, the banks are logically divided into two or four bank
groups. Accesses to different rows in the same bank are slow because of additional
delays caused by closing and opening rows. These banks work independently, which can
decrease access times. The figure also shows how the banks are distributed over the
typical eight memory chips of non-ECC memory.

In a bank, cells are organized in a grid with word lines (WL) connecting the cells hori-
zontally and bit lines (BL) connecting the cells vertically with the sense amplifiers (SA)
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of the row buffer (RB) at one end. The bank structure is shown in Figure 2.2, showing
cells as dots at each crossing of a word line and a bit line.

Mapping functions are used to map the physical address of a memory location to a spe-
cific channel, rank, bank and row (Section 2.1.3). These mapping functions are different
in most CPU-architectures and usually not published. To access a memory location, the
word line corresponding to the row is activated, connecting all cells’ capacitors in this
row with the sense amplifiers of the row buffer. This process is called opening a row and
the row that is in the row buffer is called the active row. The tiny capacitors, with a
capacity of less than 10 fF, are completely discharged when sensed by the amplifiers of
the row buffer, erasing the information from the row, it is therefore a destructive read.
Subsequent reads from the same row are then served directly from the row buffer, in-
creasing performance. If however, data stored in another row is requested, the currently
active row must be restored by writing its data back from the row buffer (row closing).
Only then a new row can be activated and moved into the row buffer. As a consequence,
reading from two different rows on the same bank also leads to writes to these rows.

The accessed row stays activated on most CPUs until another row is activated to benefit
of the faster access to an active row. This method is only effective if multiple accesses
with close proximity can be expected, which is usually the case with normal desktop
computers with a low number of cores. However, it can lead to worse performance if the
majority of subsequent accesses target varying rows because then every access has the
additional latency from closing the row. In these cases, it is faster to close the rows after
every access immediately. This is called a closed-row policy, in contrast to the open-row
policy explained prior, and it is used in many CPUs with a high core count.

2.1.2 DRAM Cell Structure

To understand the Rowhammer vulnerability, a closer look at the silicon structure is
required. A single bit is stored in one cell, which consists of a MOSFET and a capac-
itor [77]. The ongoing process optimization of these cells, lead to a design where two
cells share one active region on the silicon. Figure 2.3a shows the schematic of one active
region of this design. Figure 2.3b shows a rendering of the actual structure in silicon.
The orange area 1 shows the two capacitors of the cells. Their height in this rendering
is not to scale. The blue areas 2 are the drain and source of the two transistors. The
bit line is shown in purple 3 and connected to the two transistors. The two word lines
in dark blue 4 are embedded into the two gates in gray 5 .

The long vertical oval-like shape of the gates allows for a long channel length with a
smaller footprint when compared with the classical planar MOSFET design. MOSFETs
with very short channels have a higher sub-threshold current which leads to a faster
draining of the capacitors which cannot not be tolerated for DRAM memory [77]. Even
with the optimized channel shape the small leakage current can significantly impact the
stored charge in a short amount of time, because the capacitors are tiny, with capacitance
values below 10 fF. As a result, DRAM cells must be refreshed periodically to keep the
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Figure 2.4: The reverse engineered DRAM mapping functions of our target
device.

capacitors above their digital 1 threshold voltage [82].1 This is why this memory type
is called dynamic random access memory in contrast to static random access memory
(SRAM) that does not require refreshes to keep its content. Most modern DRAM
modules have a refresh interval of 64 ms meaning that every cell is refreshed every 64 ms.
The rows are not refreshed simultaneously but successively by rotating through all rows
and refreshing one every few microseconds.

2.1.3 DRAM Mapping

The division of the memory into many levels, from rows to channels, increases the
parallelism of memory accesses and therefore the memory throughput.

1A charged capacitor can denote a 0 or a 1, as discussed in Section 2.4.1.
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To make use of the parallelism in the DRAM structure as efficiently as possible, the
accesses to the different rows should be distributed seemingly randomly. CPU manufac-
turers developed the so called DRAM mapping functions that map physical addresses to
banks, ranks and channels seemingly randomly. These functions are different for most
CPU families and usually not published by the CPU manufacturers [66].

Knowledge of this mapping can however enable a variety of attacks like a cross-CPU
row-buffer covert channel [66] and Rowhammer attacks [50, 83]. DRAMA [66] is a tool
to reverse engineer the mapping by probing a large contiguous memory area for timing
differences due to row-buffer hits and conflicts. Figure 2.4 shows the reverse-engineered
mapping of our target device, a recent Chromebook with a MediaTek 8183 CPU. We will
use this mapping in our exploit (cf. Section 4.1.2) to detect physically contiguous mem-
ory blocks and obtain additional physical address bits of the pages in these contiguous
memory areas. With these additional physical address bits we can almost completely
circumvent the row-scrambling Rowhammer countermeasure implemented in our target
device.

2.1.4 Error Correcting Code (ECC)

For many critical applications like server infrastructure, medical devices, or financial
services, random memory errors can have a huge negative impact. The reasons for these
errors are manifold, ranging from cosmic rays [44] to the aging of memory cells [73].
Schroeder et al. [73] studied the effects of random errors on computer systems by ob-
serving the majority of Google’s servers for 2.5 years from 2006. They concluded that
over 99.7% of all random errors in a DIMM are correctable by ECC memory [73] making
ECC memory an effective countermeasure against the low volume of random memory
errors. While ECC memory was used almost only in servers and specialized hardware
a few years ago, newer memory standards like LPDDR4 and LPDDR4x brought ECC
memory into everyday mobile devices. One reason for the inclusion of ECC memory in
mobile devices is the lower power consumption. The error correction allows the refresh
rate to be decreased to approximately one quarter of what is specified for the same
memory module without ECC [63].

2.2 CPU Caches

The DRAM is too slow to keep up with the memory read and write operations per-
formed by the CPU under a normal workload. To counter this imbalance, CPUs come
with integrated caches that are a lot smaller than the DRAM, but also faster and can
therefore provide faster access to recently accessed data to the CPU. Inside the CPU
the caches are further divided into typical two or three levels with increasing size and
latency [18]. Additionally, there are special purpose caches like the translation lookaside
buffers (TLB) [18].
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Caches are divided into cache lines. On ARMv8 their size is variable, typical is a size of
64 B, e.g., in the CPU of our target device [17,19]. The L1 cache is split into two caches,
one I-cache containing instructions and one D-cache for data. The most simple cache
implementation would map each memory block to exactly one cache line (direct map-
ping). This can lead to cache trashing, rendering the cache practically useless. Therefore,
ARMv8 implements set-associative caches where each memory block is mapped to a set
which consists of multiple ways. Inside a set, the cache replacement policy decides which
cache line to evict if all ways are filled [18].

The CPU also contains other caches, for example, the TLB to store recently resolved
virtual-to-physical page translations. In some cases, programs must be able to flush cache
lines from various caches, e.g., because ARM does not guarantee coherence between L1
data and instruction caches [18]. For this, CPUs provide cache maintenance instructions
for, e.g., self modifying code.

2.3 Virtual Memory

A computer runs many processes simultaneously that all share the resources of this
computer, including its DRAM. This imposes the risk of processes manipulating the
memory of other processes or the operating system, with the consequence of crashes
and data corruption. To prevent this, the concept of virtual memory was developed. In
systems with virtual memory, every process has its own memory area which is usually
a lot larger than the actual available physical memory. On ARMv8, the virtual address
space is currently implemented with a size of 248 = 256 TB but can be increased to 252 =
4 PB with a architecture extension [16]. Every process is allowed to use every byte of its
virtual memory and it’s the task of the operating system and the CPU to map virtual
memory to physical memory on demand. To do this, the memory is divided into smaller
parts, so-called pages, with special data structures called page tables.

2.3.1 Memory Paging

Memory paging is a memory management concept where the memory of a computer is
split up into pages. Every physical page can be mapped to a page in the virtual memory
of one or multiple processes, making this virtual memory page usable. The CPU and
operating system store additional information for every page, for example, whether the
page is accessible from the user space or only the kernel, whether the page can be read,
written and executed or whether it has been accessed recently. Pages can also be backed
by a file on a computer’s disk. The smallest page size depends on the CPU architecture
and its configuration. x86-64 supports only a 4 kB pages as the smallest page size [14],
AArch64 on the other hand supports 4 kB, 16 kB and 64 kB pages [18].

Demand Paging. When a process wants to use a virtual memory area, it has to ask
the operating system to map it into the physical memory. At this point, however, the
operating system does not map any physical memory pages. It only extends the list

9



of reserved virtual addresses of the calling process. When this process later actually
accesses the requested memory, the CPU raises an interrupt because the virtual address
is not mapped. The operating system catches this interrupt and checks if the memory
was reserved by the process in which case it maps the page to physical memory and
continues the process’s execution. This procedure is called demand paging and happens
completely transparent to the process. Demand paging allows all processes on a computer
to reserve more virtual memory than there is physical memory, as long as not every
process is actually using all the memory. It also increases performance and reduces
memory consumption because unused pages are never mapped.

File-Backed Pages. File-backed pages reflect the content of a file on a disk of the
computer. Processes can map files into their virtual address space and access it through
memory read and write operations. This allows for easy file access by the process and the
underlying CPU. Binaries and libraries of running processes are mapped into their virtual
address space and executed from there. Together with demand paging, file-backed pages
add more flexibility to the management of physical memory for the operating system.
Because their content is always retrievable from the disk, they can be removed from the
physical memory whenever needed, for example, when not enough memory is available.
When they are accessed again by the process, the CPU raises an interrupt and the
operating system simply reloads the page from the disk.

Shared Pages. Another advantage of memory paging is that a single physical page
can be mapped into the virtual memory of multiple processes or in the virtual memory
of one process more than once. This is used for all files mapped read-only by multiple
processes, e.g., shared libraries or program binaries that are started more than once.
However, it is also used to share pages between processes for fast data exchange.

All these benefits and the flexibility made memory paging the de facto standard for all
computers. But the flexibility comes with the cost of a quite complex mapping system
to be able to manage the millions of pages with their associated permission and property
bits. This mapping configured via data structures called page tables.

2.3.2 Page Tables

Page tables are pages containing multiple page-table entries that store the mapping
between virtual and physical memory pages, including additional information like access
permissions and other properties of the respective pages. To allow the mapping of the
possible 256 TB of virtual memory without too much memory overhead, the mapping
is split up into multiple levels in a tree structure. x86-64 has four or five levels [14],
AArch64 can have three to five [16]. Both architectures have PTEs that are 64-bit wide,
resulting in a capacity of 4 kB/64 bit = 512 PTEs in one page table.

10



offset

0

level 4

12

level 3

21

level 2

30

level 1

39

unused

4864
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Figure 2.6: A x86-64 page-table entry containing the page-frame number
and property bits.

The translation from virtual to physical addresses works by splitting up the virtual
addresses into indices for the page table levels and a final offset within the page, as
shown in Figure 2.5.

Every process has one level-1 page table. This first page table distinguishes the virtual
memory areas of the processes. Bits 39 to 47 are the index of the entry within this level-1
PT, pointing to the physical page containing the level-2 PT. Bits 38 to 30 contain the
index of the entry within the level-2 PT pointing to the level-3 PT. It continuous like
this to the level-4 PT, which points to the page containing the data. When the MMU
has to translate a virtual- to a physical address, it has to go through all four levels to find
the physical address of the mapped page. This process is called a page-table walk and
all modern CPUs cache recent translations in the so-called translation lookaside buffers
to speed up this process.

2.3.3 Page-Table Entries (PTEs)

The page-table entries store mappings between individual virtual- and physical pages
and additional properties. Figure 2.6 shows the format of page-table entries used in 64-
bit x86 CPUs [14]. The lower bits are used to store status and configuration information
for the MMU and the operating system, cf. Table 2.1. The page-frame number of the
physical page is stored in the PFN field.

2.3.4 Memory Management Unit (MMU)

To keep the added performance overhead by the virtual memory system as small as
possible, its management and translation is performed by the CPU. All CPU instructions
work with virtual addresses which are translated, transparently to the program and
operating system, to physical addresses by the MMU. The MMU also checks various
bits of the PTE such as read, write, execute, or user-accessible permissions and the
present bit. It raises interrupts for the operating system if virtual addresses are not
mapped or accesses are not permitted.
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Table 2.1: Example property bits of a page-table entry and their meaning.

Bit Meaning Description

PR 0 present If 0, not mapped to a physical page
WR 1 write If 0, the page is read-only
UA 2 user accessible If 0, the page is only accessible by the kernel
CD 4 cache disabled If 1, all accesses to the page are not cached
EX 63 execution disabled If 1, execution is disabled

2.4 The Rowhammer Bug

DRAM cells are like gates in a CPU, under the constant pressure of miniaturization
to increase memory density and reduce power consumption. That led to the effect now
known as Rowhammer. The capacitors in the cells hold tiny charges that can be changed
through electrical disturbances induced by adjacent cells.

The problem that cells are electrically coupled and accesses to one can flip neighbor-
ing cells was long known by DRAM manufacturers but was classified as a reliability
issue and not a security vulnerability [52]. This shift in awareness came in 2014, when
Kim et al. [52] showed that some cells can be flipped repeatably from software. Attacks
exploiting random flips in the DRAM caused by, e.g., cosmic rays were already known
back then and the ease of flipping bits with Rowhammer made them a lot more danger-
ous [36]. Figure 2.7 shows the double-sided Rowhammer pattern. The two red rows are
the aggressors, the blue rows the victims. Accessing the aggressors repeatedly can cause
bits in the victim rows to flip.

Since discovery of Rowhammer, a variety of exploits and countermeasures were pre-
sented by the research community targeting different CPU architectures, devices and
applications.

2.4.1 The Physics Behind Rowhammer

Walker et al. [82] did the first in-depth analysis of the Rowhammer bug on the physical
level. They identified two effects that are the main contributors to this phenomenon.

Figure 2.3b shows the 3D view of two DRAM cells that share an active region. Upon
access to a cell, electrons are injected into the p-well and can wander to other storage
nodes. Almost 70 % of the injected electrons are captured by the cell sharing the same
active region and the nearest storage node not sharing the same active region collects
about 30%. The second cause for Rowhammer is capacitive crosstalk between the word
lines. Rowhammer can only discharge charged cells, this is obfuscated by bit flips from
0 → 1 and 1 → 0 because every DRAM uses true-cells and anticells. True-cells store a
logic one by being charged and anticells by being discharged.

Walker et al. [82] argue that physical countermeasures are possible and also describe
possible solutions in the paper. The most crucial element is to have the source and drain
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Figure 2.7: Depiction of the double-side Rowhammer pattern. The red
rows are the aggressors, the blue rows the victims. In the dark blue row
probability of a bit flipping is higher than in the light blue rows.

of the transistor not embedded in the same active region. This hinders the injected
electrons from wandering freely to the storage nodes. The capacitive crosstalk can also
be reduced by putting a metal shield between word lines. These changes have, however,
also downsides. If the source and drain do not share the same active region, floating
body effects arise that must be dealt with. To a metal should between the word lines, a
different transistor design is required.

2.4.2 Triggering Rowhammer from Software

Accessing a row causes electrons to be injected into the P-well from the bit line. These
electrons can wander into other storage capacitors and cause a change in charge large
enough to flip the bit. For this to happen, a large number of accesses is required in
one refresh period, which was named maximum-activation-count (MAC) by the DRAM
manufacturers.

The last accessed row is usually cached in the row buffer to make subsequent accesses
faster and more energy-efficient (Section 2.1.1). Because of that, alternating accesses
to at least two addresses that lay in different rows in the same bank are required. The
CPU, however, tries to make as few DRAM accesses as possible by caching recently
accessed memory. So after the first access, all following accesses would be served from the
cache and never reach the DRAM. To prevent this, different techniques like uncachable
memory, cache flushing and cache eviction can be used (Section 4.3.1) in Rowhammer
attacks.

All programs running on a computer work with virtual memory, which can be mapped
anywhere in the physical memory. To access specific rows, the virtual-to-physical map-
ping or at least parts of it are required. Prior to the first Rowhammer exploit by Seaborn
and Dullien [75], Linux had a unprivileged-user-readable proc-file with all virtual-to-
physical translations, which is now only readable by CAP_SYSADMIN users [13].

13



1 for (i = 0; i < loops; ++i) {

2 *aggressor1;

3 *aggressor2;

4 flush(aggressor1);

5 flush(aggressor2);

6 }

Listing 2.1: The basic Rowhammer loop accessing and flushing two rows.

Newer exploits use huge pages, special DMA memory functions, memory massaging and
contiguous memory detection, among others, to get (at least partial) information about
the physical address.

Listing 2.1 shows a simple Rowhammer loop using a cache flush instruction. The two
pointers aggressor1 and aggressor2 are first both accessed, causing each row they
are pointing to, to be opened and closed. Afterward, both addresses are flushed from
the CPU caches. When writing native code for x86 or ARMv8, this is easy because
both instruction sets have cache flush instructions. On ARMv8 they are available from
unprivileged code if enabled in the kernel, on x86 they are always available from unpriv-
ileged code and cannot be disabled. For attacks from non-native code like, for example,
JavaScript specifically crafted access patterns can be used to evict the cache (cf. Sec-
tion 4.3.1).

2.5 Speculative Execution

On the architectural level directly observable by a running program, the CPU executes
every instruction in the strict order defined by the program. However, on the microar-
chitectural level, the CPU has multitude of optimizations to increase the performance,
fully transparent to the running programs. Instruction have different latencies, often
depending on the complexity. An ARM integer divide (DIV), for example, takes up more
clock cycles than an integer add (ADD) instruction [18]. Instructions that access data
from the DRAM have variable latencies because the data can be cached or not. To
minimize the effect of these latencies on the execution speed of the program, CPUs can
execute multiple instructions without any data dependency in parallel. They can also
reorder independent instructions to fill all execution units as efficiently as possible and
execute them out of order.

Another optimization targets conditional jumps like branch instructions which can de-
pend on the delayed outcome of arithmetic instructions, memory accesses or returns
from procedures that require the return address from the stack. In these cases, among
others, CPUs speculate on the outcome of the branch or return instruction and execute
instructions without knowing the actual outcome. When the required result becomes
available and the prediction was not correct, the CPU reverts all speculatively executed
instructions and continues with the correct path. If the prediction was correct, the CPU
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Figure 2.8: A branch condition can have two possible outcomes. Depending
on the prediction, the execution can be fast or slow and lead to spectre.

saved clock cycles and improved the performance.

In 2017, five research groups discovered that speculative execution leaves microarchi-
tectural traces that can be detected through side channels. This breaks the important
security assumption that speculative execution has no impact on program execution ex-
cept its performance. When memory loads are executed speculatively, the loaded values
are cached. Due to that, the information if specific memory locations were accessed
during speculative execution can be extracted afterward by measuring the time it takes
to access the value. If it is below the threshold for cached accesses, the memory was
accessed during speculative execution. This can be used maliciously to extract secret
information like keys from other processes.

The CPU uses complex branch prediction circuits to execute the correct branch out-
come as often as possible. These branch predictors consider the outcomes of previously
executed branches and learn from these. Consequently, the branch predictors can be
mistrained to execute branches speculatively in an attacker-controlled way. This mis-
training is simplified by the implementation on all tested CPU that only uses parts of the
virtual address to remember branches. So it is possible to mistrain the branch predictor
in the attacker’s processes and then have an attacker-controlled path taken in the victim
process.

Listing 2.2 shows the most simple victim code of a conditional branch that can be
exploited with spectre to leak an inaccessible value. x is an attacker-controllable value,
e.g., user input and array2 is shared memory with the attack process. The attacker then
executes this code many times with values for x that are smaller than array1_size,
training the branch predictor into believing that this condition is always true. After
the training is done, the attacker flushes array2 from the cache and sets x greater than
array1_size. The CPU then executes the code speculatively which leads to a out-of-
bounds read of array1 and caches a cache line of array2 depending on the out-of-bounds
value. The attacker iterates over the pages in array2 and measures the access time to
retrieve the value. It is smaller for one index of array2 because it was cached. This
index equals the the value that was read outside the bounds of array1.
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1 if (x < array1_size)

2 y = array2[array1[x] * 4096];

Listing 2.2: Example code of a conditionnal branch that can be exploited with spectre.

Branch prediction can also be used to speculatively execute gadgets to build custom
chains of instructions similar to return-oriented programming. For this, the attacker first
searches for gadgets in the victim binary and then builds the chain in his own memory,
mimicking the virtual addresses of the gadgets in the victim. The branch predictor is then
mistrained by executing the chain in the attacker process and is speculatively executed in
the victim. The result is retrieved again through a side channel, e.g., the cache. This is
very powerful because it also works on victims that do not contain instruction sequences
like in Listing 2.2 that can be exploited directly.

In this thesis, we will present a new way to use speculative execution and exploit its
exception suppression capabilities to make Rowhammer attacks more reliable when at-
tacking ECC memory. (cf. Section 5.5).
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Chapter 3

Rowhammer Countermeasures

Rowhammer is a real threat for computer systems, shown by the variety of exploits. This
in turn, led to the development of many countermeasures to defend against Rowhammer
exploits. They range from software that is detecting ongoing attacks to hardware changes
and aim at every step in an exploit’s run time [20,25,29,32,42,45,51,52,54].

Gruss et al. [39] identified three methodologies to classify Rowhammer countermeasures:
detection, neutralization and elimination. Detection countermeasures examine, for ex-
ample, performance counters or memory access patterns to detect ongoing Rowhammer
attacks. Another method is to search binaries for suspicious instructions or instruction
sequences often used by Rowhammer exploits. Neutralization countermeasures allow
Rowhammer bit flips to happen, but ensure that they cannot be exploited. This is
possible by isolating the memory of the attacker and the victim. Elimination counter-
measures try to eliminate Rowhammer bit flips altogether. This requires a hardware
change in most cases and is therefore not easily implemented on existing systems.

3.1 Detection-Based Countermeasures

Rowhammer attacks leave traces while running, like an unusual high cache miss rate
and special memory access patterns. Some countermeasures use these characteristics to
detect ongoing attacks and stop them. The other possibility is to try to detect malicious
programs by analyzing the binary for suspicious instructions and instruction sequences.

3.1.1 Detection Through Runtime Traces

Rowhammer requires direct access to the DRAM and must therefore constantly bypass
the caches either through special instructions or eviction sets. Every DRAM access
is caused by a cache miss, which can be detected by the CPUs performance counters.
Performance counters are a functionality of many CPUs that can be used by application
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developers to find performance-related issues in their software, which among others can
be frequent cache misses.

Seaborn et al. [75] already discussed the idea of using performance counters to detect
Rowhammer attacks in their first exploit blog post. Aweke et al. [20] then presented
a working implementation called ANVIL. What distinguishes a normal running appli-
cation that causes many cache misses, because it is for example reading large amounts
of memory, from Rowhammer is the high spatial locality of the Rowhammer accesses.
A high spatial locality and a high cache miss rate are unlikely under normal circum-
stances by design. Another criteria for most Rowhammer attacks, except one-location
Rowhammer, is that at least two rows in the same bank show these high cache miss
rates. By taking these characteristics into consideration, ANVIL achieves a very low
false-positive detection rate that translates into an average overhead of only 1.17 % with
a 100 % detection rate on their test exploits.

To counter the attack, ANVIL accesses the neighboring rows of the aggressors, which
refreshes the charges in the cells. Aweke et al. [20] note that a clever attacker cannot use
the selective refresh to hammer other DRAM rows due to low selective refresh rate. This
assumption was just proven wrong by Qazi et al. [71] with the discovery of half-double
Rowhammer.

3.1.2 Detection Through Static Code Analysis

Static code analysis searches the binary for suspicious instructions and instruction se-
quences to detect potential malware before it is executed. Irazoqui et al. [45] developed
MASCAT which aims to detect Rowhammer and cache or DRAM side-channel attacks.
Most of them share similar code features to bypass the cache or access high precision
timers which are uncommon for benign software. Bypassing the cache is usually done
with a cache flush instruction or cache eviction. The cache flush instruction can be de-
tected easily and is very suspicious when executed in a tight loop together with accesses
to the same memory locations. Cache eviction is often implemented with pointer chasing
to improve performance which is another strong indication for malware code.

MASCAT was proposed as a part of the approval process for an app store where every
app is scanned automatically and a human can verify the results to reduce the false
positive rate. However, this only works if the hammer code is in the binary at the time
when it is checked. Code obfuscation or encryption can circumvent the detection. To
use code encryption the attack must be able to run dynamically generated code. This is
possible on Linux and also Android with the NDK by mapping writable and executable
pages, in JavaScript code can be executed with eval().
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3.2 Neutralization-Based Countermeasures

Neutralization-based countermeasures take a different approach by allowing Rowhammer
bit flips to happen but preventing exploiting them by separating potential aggressor rows
from victim rows.

Brasser et al. [25] achieve that by isolating the kernel memory from the userspace mem-
ory. For this they extended the memory allocator in the Linux kernel. By isolating
kernel from userspace memory, CATT protects only against exploits that are targeting
the kernel from the userspace. If an attack is able to hammer directly in the kernel, e.g.,
through syscalls or network traffic, or gain root privileges by flipping bits in the user
space, CATT cannot prevent them.

ZebRAM is extending this methodology by not only protecting the kernel from the
userspace, but all processes on a system from each other [54]. Konoth et al. [54] split
the physical memory into safe and unsafe rows, which are distributed over the entire
memory in a zebra pattern. This ensures that the safe rows, which are used for memory
mappings for the kernel and userspace, are never directly adjacent to each other. As
this alone would halve the usable memory, ZebRAM utilizes the unsafe rows as integrity
checked and ECC protected swap space. The discovery of half-double Rowhammer by
Qazi et al. [71] requires a reevaluation of this protection mechanism because it allows
hammering over the distance of two rows if it is possible to control the content in the
unsafe rows.

3.3 Elimination-Based Countermeasures

Elimination-based countermeasures aim to prevent Rowhammer bit flips from happen-
ing. Some try to get a Rowhammer-free DRAM, which would be the best solution to
the problem while others try to make it infeasible to hammer specific victims. However,
all elimination-based countermeasures have one of two problems. They are either not
designed for Rowhammer and therefore not really effective and can be circumvented,
or they are implemented in hardware, therefore hard to distribute and not adaptable if
broken.

3.3.1 Shorter DRAM Refresh Interval

For Rowhammer to flip bits, aggressor rows must be activated more often than a cell-
dependent threshold, now called the maximum activation count (MAC) in one refresh
interval. The refresh interval has therefore a direct influence on the number of Rowham-
mer induced bitflips in every DRAM module. Kim et al. [52], therefore, investigated the
feasibility of decreasing the refresh interval as a countermeasure against Rowhammer
and came to the conclusion that it is not enough. It was, however, still proposed by
many hardware manufacturers as a countermeasure [8–10,37].
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The refresh interval of typical DRAM is 64 ms. During every refresh, the DRAM cannot
read or write any memory, so decreasing the interval adds additional latency to DRAM
operations and lowers performance. Additionally, the power consumption is increased
because every row must be read, amplified and written back more often. To eliminate
Rowhammer on all modules tested by Kim et al. [52], the refresh interval must be so
low that the DRAM would spend 11.0 %–35.0 % refreshing, which is an impractical
value. Taking into consideration that modern DDR4 memory modules require as little
as only 50k aggressor activations in comparison to 139k on DDR3 modules measured by
Kim et al. [52] makes this countermeasure even less feasible on modern memory [31,52].

3.3.2 Error Correcting Code (ECC) DRAM

ECC memory is great at correcting random bit errors and, therefore, used in almost all
server infrastructure, medical devices or financial services [73]. It additionally can reduce
the power consumption of the DRAM in mobile devices and is, therefore, included in
many LPDDR4(x) memory modules.

Although Rowhammer induced bit flips are seemingly similar to random bit flips, ECC
memory is not an effective countermeasure against Rowhammer. This was already ob-
served by Kim et al. [52]. All modules tested by them that were vulnerable to Rowham-
mer had victim rows with more than one bit flip per code word.

Most ECC DRAMs implement single error correction, double error detection (SECDED)
codes. This means that single bit flips are corrected, but two bit flips in one code word
are only detected. If more than two bits flip, even detection is not possible in all cases.
What makes matters worse is that many systems simply ignore double bit errors. The
CPU would be able to handle these detections and inform the operating system which
could, for example, reboot. However, most systems checked by Lanteigne et al. [57]
simply ignored double bit flips or acted only when the number of detections was above a
certain threshold. Our target device does also have LPDDR4x DRAM with ECC. Single
bit flips are corrected, which is why we always see flips in pairs or rarely triplets, but
these are ignored by the CPU and OS.

3.3.3 Disabling Huge-Pages

Huge pages allow programs to get a 2 MB contiguous block of memory which improves
performance because fewer page table walks are necessary. However, it also gives ad-
ditional physical address bit information and contiguous memory that usually spawns
over multiple neighboring rows. Both things are very helpful for Rowhammer. This
enables many Rowhammer attacks after access to /proc/self/pagemap was disabled in
the Linux kernel as a countermeasure.

It is however, still possible to use timing side channels in combination with reverse-
engineered DRAM mapping functions to detect contiguous memory blocks figure out
additional physical address bits. We use two methods to achieve that in our exploit and
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describe them in more detail in Sections 5.2 and 5.2.2. But there are also new exploits
that are still dependent on huge pages like SMASH [29]. De Ridder et al. [29] name
disabling huge pages in browsers as an effective countermeasure against their attack.

3.3.4 Target Row Refresh (TRR) DRAM

The basic idea behind TRR was already proposed by Kim et al. [52] in the paper first
describing the Rowhammer vulnerability. In theory, TRR counts the accesses to all rows
in the DRAM and refreshes neighboring rows of rows that were accessed above a specific
threshold since the last refresh. This threshold called the MAC is determined by the
DRAM manufacturer. In reality, the energy and space cost is too high to count the
accesses to all rows in the DRAM and the DRR specification does not allow to refresh
unlimited rows when required. [31]

Frigo et al. [31] did an in-depth analysis on the behavior of TRR implementations of all
major DRAM manufacturers and came to the conclusion that there are many different
TRR implementations and none of them are documented openly. Intel also developed a
TRR method called pseudo TRR (pTRR) which is implemented in the memory controller
of the CPU. It is however, only available on very few systems because no consumer CPUs
and only a few server CPUs from Intel support pTRR.

Typical TRR implementations consist of a sampler and an inhibitor [31]. The sampler
counts accesses to rows and tries to detect aggressor rows. The inhibitor then refreshes a
victim to protect it when a neighboring aggressor was accessed more often than defined
in the MAC. Frigo et al. [31] used SoftMC, an FPGA memory controller, to analyze
the inner workings of TRR on multiple memory modules of different manufacturers.
They found that the samplers of all tested modules can only count a few rows. If more
aggressors are hammered, the samplers overflow and bitflips can occur. The samplers
on modules of one manufacturer were synchronized with the REFRESH command and
only counted the accesses of the first few rows that were accessed after the refresh.
Some samplers also have a dependency between the addresses of multiple aggressors
presumable due to internal optimizations. The inhibitor on most modules could only
refresh one victim per REFRESH command because DDR is a synchronous protocol. This
means that the modules have only tRFI nanoseconds to complete the normal DRAM
refresh plus a TRR refresh before the memory controller sends the next command.

3.3.5 Row Scrambling

All Rowhammer attacks that try to hammer precisely selected victim pages or use more
advanced hammer patterns like double-sided Rowhammer require knowledge about the
physical layout of rows inside a bank respectively knowledge about which addresses map
to physically neighboring rows. Row scrambling is a countermeasure that complicates
finding neighboring rows and relatively simple to implement by DRAM manufacturers.
It works by applying a logic function to the row index bits that rearranges the order of
the rows. The row scrambling function of our target device is shown in Equation 3.1.
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ri ⊕ (ri[3]� 2)⊕ (ri[3]� 1) (3.1)

On our target device, the row index starts at physical address bit 15, so the scrambling
function uses physical address bits 16, 17 and 18. With 2 MB huge pages, it can be
easily be circumvented because there are enough physical address bits available. We also
managed to reverse engineer physical address bits 16 and 17 with contiguous memory
detection and the DRAM mapping functions to correctly guess the scrambling in 50 %
of all cases (Section 5.2).
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Chapter 4

Exploit Concepts

Since the discovery of Rowhammer by Kim et al. [52] in 2014, researchers presented a
large variety of exploits attacking Linux [27, 31, 75, 80], web browsers [21, 29, 30, 41, 75],
Intel SGX [39], OpenSSH [55], remote systems over the network [58,78], Hypervisors [72]
and TRR DRAM [29, 31]. In this chapter, we want to give an overview of the different
ways these exploits operate.

Rowhammer exploits can be split into four steps, memory preparation (cf. Section 4.1),
data preparation (cf. Section 4.2), hammering (cf. Section 4.3) and exploitation (cf. Sec-
tion 4.4). Memory preparation is the first step with the goal to allocate physically ad-
jacent rows that are required for most Rowhammer patterns. To exploit Rowhammer
bit flips, the attack must hammer vulnerable data, ranging from kernel data structures
to instructions inside the attack. In the second step, data preparation, this vulnerable
data is placed in the victim rows with the help of many different techniques. When
the data has successfully been placed, the attack hammers the victim row. Depending
on the attack scenario, the hammer pattern and cache bypass method can vary widely.
Finally, the flipped bit in the vulnerable data is exploited to achieve the attack goal,
like privilege escalation or a virtual machine escape. In order to give a clearer picture,
the descriptions of the steps include descriptions of exploits that perform the respective
step.

4.1 Memory Preparation

Having access to physically adjacent rows allows the attack to hammer more efficiently
with more effective patterns and have more control over the corresponding victim row.
Obtaining the knowledge about which memory locations correspond to adjacent rows is
not straightforward because of virtual memory and complex DRAM mapping functions.
However, with the combination of different techniques like timing side channels, huge
pages, contiguous memory detection and row unscrambling it can be achieved by an
unprivileged attacker.
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4.1.1 Rows On Same Bank

The first requirement for most Rowhammer patterns is the access to at least two rows
on the same DRAM bank. Repeatedly accessing only one row would usually1 keep this
row in the row-buffer of the bank and, therefore, cause no electrical disturbances to flip
bits. There are two ways to get rows on the same bank. The first one is with the DRAM
mapping functions that determine the mapping of the rows to the banks and and the
second one through a timing side channel.

DRAM Mapping Functions

If the DRAM mapping functions and all required physical address bits are available, it
is trivial to map the rows to the corresponding banks. Reverse engineering the mapping
functions is possible with the DRAMA tool developed by Pessl et al. [66]. The mapping
of our device is shown in Figure 2.4. Two rows are on the same bank if the values X1−X4

have the same value. The difficulty with this approach is to get the required physical
address bits. Prior to the first Rowhammer kernel privilege escalation the virtual to
physical address mapping could be read from /proc/self/pagemap, but this file was
made only root-readable as a response to this attack. Another option is to use huge
pages (cf. Section 4.1.2). In the huge page, the lowest 21 virtual address bits are the
offset and, therefore, equal to the physical address bits. An advantage of using the
DRAM mapping functions is that not only the bank but also the location within the
bank is known. This simplifies the search of neighboring rows.

Timing Side Channel

The second approach uses a timing side channel on the access latency between the
accesses to two rows. If a row is accessed, its content is moved into the row buffer,
the row is opened, and stays in this buffer until another row is in the same bank is
accessed1. In this case, the old row must be closed before the new row can be opened.
The additional latency can be measured by alternatingly accessing two rows a fixed
amount of times and measuring the time the accesses take. If the rows are located in
different banks, they stay in the row buffer. If the rows are located in the same bank,
the rows must be opened and closed each time and the accesses are measurably slower
than in the first case. For the timing side channel to work, the accesses must not be
cached.

However, this technique does not provide any information about the location of the rows
within the bank, which is required for most efficient hammer patterns. When used on
contiguous memory, e.g., huge pages, the contiguity also translates to the rows according
to the DRAM mapping functions (cf. Section 4.1.2). When no contiguous memory is
available, the side channel can be combined with the knowledge of the DRAM mapping

1On systems with an open-row policy the row is kept open until another row is opened.
(cf. Section 2.1.1)
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functions to detect contiguous memory blocks and reverse-engineer additional address
bits (cf. Section 5.2).

4.1.2 Contiguous Memory

Because Rowhammer exploits a weakness in the DRAM it is beneficial to gain knowledge
about which locations of the virtual address space are physically adjacent inside the
DRAM. Having a block of contiguous memory simplifies this task.

Huge Pages

Huge pages are a performance optimization used in all modern operating systems and
supported by all major CPU architectures that can speed up applications relying on
large amounts of memory [60]. Usually, the physical and virtual memory is divided into
4 kB long chunks, called pages. Virtual pages of different processes are then mapped to
physical pages through multiple levels of page tables. When accessing a virtual address,
the memory controller of the CPU has to load every level of the page table from the
memory to find the corresponding physical address. There is a special cache for virtual
to physical memory translations called the TLB that speeds up similar translations. If,
however, a program accesses a big memory area that spawns many last-level page tables,
there is a noticeable negative impact on performance.

To solve this problem, the last level page table or the last two levels can be skipped.
This results in pages that are 4 kB · 512 = 2 MB or 2 MB · 512 = 1 GB large. However,
the performance increase is not relevant for Rowhammer, but the knowledge that huge
page memory is contiguous and the knowledge of nine additional bits of the physical
address per skipped page table level. Therefore, with a 2 MB huge page, an attacker has
512 contiguous 4 kB pages and knows 21 bits of the physical address.

Huge Page Support. When mapping memory with the mmap syscall the flag
MAP_HUGETLB | MAP_HUGE_2MB tells the kernel to map a 2 MB huge page. If the kernel
does not map a 2 MB page, the syscall fails and no memory is returned. The advantage
of this approach is that the memory returned if the call was successful is guaranteed
to be a huge page. For this to work, huge page support must be explicitly enabled in
the kernel and it has to reserve memory for huge pages at boot time or by a user with
root privileges. Because of this inflexibility, huge page support is usually not enabled on
systems and it is not enabled by default in many Linux distributions. As a consequence,
an attacker cannot rely on this type of huge pages to get contiguous memory.

Transparent Huge Pages. The conflict between the performance increase for many
applications and the complex and inflexible configuration led to the development of
transparent huge pages [15]. With transparent huge pages, the kernel uses 2 MB pages
whenever possible without the knowledge of the running program. This increases its
performance and does not require any changes by the programmer or add any restrictions.
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Additionally, a program can request a huge page with the madvise(MADV_HUGEPAGE)

syscall, which will always result in a huge page mapping if the address is 2 MB page
aligned and there is space in the physical DRAM.

Contiguous Memory Detection

Huge pages are solely a performance optimization, because of that they can easily be
deactivated should there be a security concern. Therefore, relying on them is not optimal
for an exploit. Another way to get contiguous memory is to detect it in a large memory
area. The buddy allocator used in Linux tries to keep physically contiguous memory
intact as long as possible by always using the smallest available chunks, usually single
pages, for new mappings. But when mapping a large enough area, it has to use contiguous
memory eventually [30].

Using a side channel to get rows on the same bank and the reverse-engineered DRAM
mapping functions, it is possible to detect these contiguous memory areas. For this the
unique distance patterns given by the DRAM mapping functions are used. We use this
technique in our exploit and describe it in more detail in Section 5.2.

Row Unscrambling

Row scrambling is a simple Rowhammer countermeasure that applies a function to some
row address bits, scrambling the rows. It is used to make it harder to find adjacent
rows inside a bank. Row scrambling is described in more detail in Section 3.3.5. To
hammer efficiently with most Rowhammer patterns, neighboring rows are required and
we therefore have to unscramble them.

In our target device, the memory uses physical address bits 16, 17 and 18 to perform
the scrambling. With huge pages, the unscrambling is trivial because they provide the
lowest 21 bits of the physical address. If contiguous memory detection is used, higher
physical address bits are not available straightforward, but it is still possible to retrieve
bit 16 and 17 using the distance patterns given by the DRAM mapping functions. We
explain the details in Section 5.2.2.

4.2 Data Preparation

Random bit flips in the memory can have severe effects on a system like crashing pro-
grams, corrupting file systems or modifying user credentials [58]. But most attacks have
a specific goal which requires more control over the data that is hammered. During data
preparation the attack puts the target data into the victim row. It is usually split into
two steps. During memory templating the attack searches the memory for a victim row
with an exploitable bit flip. After finding one, it puts the victim data in that row by
spraying the memory with it [30, 75], deterministically placing the victim data [80] or
detecting when the victim data is in that row while moving it around randomly [39].
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4.2.1 Memory Templating

Memory templating utilizes the fact that Rowhammer bit flips are repeatable most of the
time [52]. The reason is that Rowhammer bit flips happen in weak memory cells where
due to production variance, the cell transistor has a high subthreshold leakage [82]. The
repeatability also involves the bit flip direction. Cells flipping from zero to one do usually
not flip from one to zero and vice versa. With this knowledge, the attacker can map a
big chunk of memory and check every row for victim cells with bit flips. The search can
be even more fine-grained by selecting the victim cells based on their offset within the
page. This ensures that later in the attack when the victim data is in the victim page, a
bit flip happens in an exploitable location, e.g., the PFN-field of a PTE and not in any
other bit that could corrupt the PTE.

4.2.2 Blind Hammering

Memory templating is based on the assumption that Rowhammer induced bit flips are
repeatable. However, this assumption is not entirely accurate in the presence of ECC
memory. Without ECC memory, the success of a bitflip is only dependent on the content
of the victim cell. For example, if this cell is prone to flip from 0 to 1, it does not flip if
it currently holds a one. With ECC memory, this dependency extends to the content of
other cells in the same 64-bit data word. To evade this issue, we developed a technique
that does not require templating, which we describe in more detail in Section 5.4.2.

4.2.3 Data Spraying

Regardless of whether memory templating or blind hammering is used, the victim data
must be placed between aggressors rows. Placing physical pages in the DRAM is done
by the kernel and there is no direct way for userspace processes to influence the position
of physical pages. One option is to fill as much memory as possible with the victim data
increasing the probability that victim data is placed between aggressor by chance [75].

Data spraying is only applicable if there is a mechanism to create many copies or in-
stances of the victim data from an unprivileged process. This is for example the case for
page tables and instructions belonging to the attack process. Both types of data were
used by Seaborn et al. [75] in their first kernel privilege escalation and Google Chrome
Native Client (NaCl) sandbox escape. To spray the memory with page tables it is enough
to repeatedly map a shared memory file. Every mapping creates multiple page tables
depending on the size of the file and the amount of mappings is only limited by the size
of the virtual address space and the number of virtual memory areas. We describe the
page table exploitation in more detail in Section 4.4.1. For the NaCl exploit, it is enough
to hammer instructions belonging to the attack process. To spray these the instructions
they are written many times into writable and executable pages. Instruction flipping is
explained in Section 4.4.2.
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The size limitation of the virtual address space and the maximum amount of virtual
memory areas one process can create must be considered. On most systems, the virtual
address space has a size of hundreds of terabytes and is therefore large enough, it can
however be smaller on some ARM devices due to a performance optimization. This is
the case on the target device of our exploit and we explain the solution in Section 5.3.

filesize =

⌈
memsize

pagesize
· 1

#VMAmax − buffer

⌉
· pagesize

PTEsize
(4.1)

One virtual memory area (VMA) represents one mmap’d memory area and the maximum
amount is 216 = 65.536 VMAs. As a consequence, the size of the shared memory file
must be large enough that mapping it less than 216 creates enough page tables to fill
the whole available physical memory. It should, however, also be as small as possible to
not waste memory that page tables could use [75]. Equation 4.1 calculates the minimal
possible size for the shared memory file given the size of the memory that should be
filled and a buffer to use a bit less than 216 VMAs.

4.2.4 Phys Feng Shui

While page table spraying is relatively simple, its behavior is not predictable and the
outcome depends a lot on the attacker’s luck. There is no control over the locations of
the page tables or their contents, thus also, after flipping a bit successfully in a PTE the
new PFN target can be anywhere. With Phys Feng Shui, Van der Veen et al. [80] utilize
the predictable behavior of the memory allocator used in Linux and Rowhammer bit flip
repeatability for the first fully deterministic Rowhammer exploit on Android they called
Drammer [80]. To hammer double-sidedly, it uses uncached contiguous DMA memory,
which is available to all apps on Android. Like the previous exploit, it also tries to
hammer a page table to get full access to the memory, which is then used to find and
change the UID of the process in the struct cred to gain root privileges.

Linux uses the buddy allocator algorithm to manage its physical memory. Its main goal
is to keep large contiguous memory areas intact as long as possible by always using the
smallest available chunks for new allocations and splitting up bigger chunks only if nec-
essary. It additionally recombines smaller chunks whenever possible. Figure 4.1 shows
how to exploit this behavior to allocate a page at an attacker controlled location.

(a) Is the initial memory situation, the dark grey memory is filled, the white is free.
The attacker found an exploitable bit flip at the location marked with an X during
memory templating.

(b) All M chunks are allocated. The system does not come close to a out-of-memory
situation because there are still plenty S chunks available.

(c) The M chunk that contains the target page is freed. It is now the only free M chunk
in the memory.
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(a) (b) (c) (d) (e)

Figure 4.1: An example of using memory waylaying to deterministically
place a page at an attacker chosen position (marked with an X).

(d) S all allocated until the M chunk is split into S chunks. The attack knows that
subsequent allocations with size S will be placed were the M chunk was.

(e) Additional S chunks are allocated as a padding, the attack knows how many are
required. Finally the victim page is allocated in the target location.

To do these memory allocations correctly, the attacker needs a way to know about
the current state of the buddy allocator. On Linux, it is possible to get the number
of free blocks of every size from the file /proc/buddyinfo and detailed information
about the memory zones from /proc/zone-info. The DRAMMER [80] exploit used
/proc/pagetypeinfo, but this file was since changed to be only readable by the root
user.

With the ability to put pages precisely into the physical memory, it is also possible to
predict precisely where a PTE will point to after hammering. This can be used to always
have it point at itself, which simplifies the exploit. To do this, the offset and flip direction
of the bitflip found during templating is important. The offset within the PFN-field of
the PTE determines the distance between the page table and the page it maps to, the
target page. The direction of the bitflip determines if the page table is in front or the
back of the target page. Additionally, a part of the physical address is known because
of the alignment properties of the different block sizes.

If a 0 → 1 bit flip was found in the seventh bit of the PFN of the 56th PTE in a page
table on a 64-bit system with 4 kB pages during templating, the following conditions
must be fulfilled to exploit this bit. A 0→ 1 bitflip increases the PFN which means the
page table must be behind the target page. The seventh bit of the page number of the
target page must be zero. To have the PTE at index 56 of the page table the virtual
address must have the bits 12 to 21 set to 56. If all these conditions are met, hammering
the page table will lead to the PTE at index 56 point to its own page.
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From there, the exploitation techniques of Section 4.4 can be used. The Drammer exploit
changes the UID field of the app’s process.

4.2.5 Memory Waylaying

Memory Waylaying is a technique by Gruss et al. [39] to move a victim binary to an
attacker selected location in the memory. It is required for opcode flipping if it is not
possible to spray the memory with exploitable instructions like in the NaCl exploit.
When opening and reading a file, its content is copied from the hard disk into the
DRAM. When the file is not needed anymore, it is not removed from the memory but
kept in the page cache, resulting in faster subsequent reads of the same file. The page
cache usually fills the whole unused memory because the kernel can easily discard pages
if more memory is required by running programs. The same applies to new entries in
the page cache. They simply replace older entries. Because of that, every application
running in userspace can evict the page cache by accessing enough locations in a file.
When a file is evicted from the page cache and reloaded later it is loaded into another
location in the memory. The advantage of this technique is that the system never runs
out of memory because the page cache only uses the otherwise free memory.

By repeatedly loading a file into the page cache and evicting it again, its page cache entry
is randomly moved around in the memory and will eventually land in the victim row.
To exploit this, knowledge about the current location of this file within the page cache
respectively physical memory is required. Prior to the memory waylaying, a memory
cell prone to flipping is searched that is at one of the required offsets within a page. This
page is the target location for the file in the page cache. To get the physical location
of the page cache entry and know when it is on the target page, the prefetch address-
translation oracle is used [40]. This oracle exploits the fact that prefetch instructions on
x86 do not check for access permissions. This makes it possible for userspace processes
to prefetch every physical address into the memory through the direct physical mapping
in the Linux kernel that maps every physical page. This was possible because all kernel
pages were also mapped in the virtual address space of every userspace process to make
context switches faster.

The KAISER patch developed by Gruss et al. [38] for the Linux kernel removes most of
the mappings of the kernel pages in the userspace’s virtual memory on x86, rendering
this prefetch oracle unusable. Its initial purpose was to defend against side channels
used to break KASLR. It proved, however, to be an effective countermeasure against the
Meltdown vulnerability found later and KPTI, which is based on KAISER, was quickly
implemented in Linux as well as similar functionality in the kernels of Windows and
MacOS [59].

Gruss et al. [39] combined a new hammer pattern, novel memory waylaying, a new attack
target and Intel SGX to defeat all countermeasures. Intel SGX is a secure enclave
that protects programs from all other software running on the system, including the
operating system and a hypervisor. It does this by, among other things, encrypting all
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memory and disabling the performance counters for an enclave application. The disabled
performance counters defend against countermeasures that use the performance counters
to find processes that cause an unusually high amount of cache misses. The exploit is
also secured against countermeasures that use static code analysis because it is encrypted
and only decrypted within the enclave. The third improvement is the usage of a novel
hammer pattern called one-location Rowhammer. It hammers by only accessing a single
row repeatedly, which is possible due to an optimized memory controller policy for CPUs
with high core counts.

The memory encryption and integrity check of enclave applications can also be exploited
by hammering enclave memory. If this integrity check done by the memory controller
fails, the CPU halts until a manual power cycle is performed. This enables simple DoS
attacks.

4.3 Hammering

In the hammering phase the attack tries to flip a bit in the victim data with Rowhammer.
Firstly, this requires direct the accesses to the rows in the DRAM and therefore bypassing
of the CPU caches. This can be achieved with uncachable memory (most efficient),
cache flushing or cache eviction (least efficient). The cache bypass technique usually
used depends on which one is available and practical on the system under attack.

Secondly, there are many different hammer patterns that were found by researchers over
the years. Every one comes with its own characteristics like efficiency in terms of bit flip
frequency, stealthiness and countermeasure resistance. The used pattern again depends
highly on the system under attack. Most attacks run their hammer code on the CPU
in the attack process, but it was also shown that hammering from the GPU [30] or over
the network is feasible [58,78].

4.3.1 Cache Bypassing

Compared to the CPU, the DRAM is really slow. Accessing the DRAM can take hun-
dreds of CPU cycles, limiting the number of memory operations a CPU can do. To
counter this problem, CPUs contain multiple levels of caches of different sizes and la-
tencies. They save the result of memory operations and make subsequent operations to
the same memory location faster. This hinders the memory operations to actually reach
the DRAM which is a necessity for Rowhammer. Consequently, a procedure is required
to avoid the cache and access the DRAM as quickly as possible.

Uncachable Memory

It is possible for the kernel to mark pages as uncachable with a bit in the PTE on
x86 and ARM. This is, for example, used for memory areas that are shared with other
devices through DMA. Access to the memory from other devices through DMA bypasses
the CPU and therefore its caches. Because of that, cache coherency problems can occur
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if the CPU architecture does not actively monitor the memory bus to invalidate its
corresponding caches. x86 CPUs have this functionality, ARM CPUs do not and because
of that, Android had an API that allowed every app to request uncachable DMA memory.
The memory returned by this API had the second advantage that it was physically
contiguous. This was exploited in 2016 by Victor van der Veen et al. [80] in the first
Rowhammer exploit on ARM and Android called Drammer.

Uncachable memory has the advantage that it is the fastest way to access the DRAM in
terms of accesses per second. So for some memory chips that are only slightly vulner-
able to Rowhammer induced bitflips, hammering with cache flush instructions or cache
eviction can be too slow.

Cache Flush Instruction

All CPU architectures come with instructions to invalidate and write-back cache lines
in the main memory. There a various legit reasons for a program having to flush cache
lines from specific caches like modifications to page table entries or when the dynamic
generation of code requires the synchronization of the instruction- and data-caches [18,
23]. JIT compilation is used in the JavaScript engines of all modern web browsers, in
the Java virtual machine and many more applications [28, 61]. This is an example of
legit use of the cache maintenance instructions from the userspace, which is why they
are available in userspace in x86 and ARM-v8.

The x86 instruction clflush was used in the first description of the Rowhammer bug
by Kim et al. [52] and in the first two exploits by Seaborn et al. [75]. These instructions
are, however only available from native code. For interpreted languages like JavaScript,
a third option, cache eviction is possible.

Cache Eviction

When no uncached memory or cache flush instruction is available, the cache lines must
be evicted by accessing a set of other addresses, a so-called eviction set. Because the
LLC is inclusive, it is enough to evict a cache line from the LLC, which also evicts the
cache line from the L1 and L2 cache.

The LLC on all modern CPUs is divided into slices, sets and ways. The slice and set
are calculated from the physical address with usually undocumented functions. The
ways are where cache lines with the same slice and set are stored flexibly, meaning that
a cache replacement policy decides which cache line to evict. Therefore, the eviction
set to remove an address A from the cache must consist of addresses that map to the
same slice and set as A. The number of addresses must be greater than the number of
ways and must be accessed in the correct order, the access pattern, to trick the cache
replacement policy to evict A. For systems where the cache mapping functions and the
replacement policy are available, an eviction set can be built manually. However, this
information is usually not available when running an attack on an unknown system. To
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counter this Gruss et al. [41] build eviction sets dynamically for their Rowhammer.js
exploit.

The significant disadvantage of cache eviction is the reduced hammer rate. The addi-
tional DRAM accesses that are necessary to evict the two cache lines of the aggressor
rows slow down the hammer loop. Therefore fewer accesses to the aggressor are per-
formed during one refresh interval, which leads to a smaller amount of bit flips.

Rowhammer.js by Gruss et al. [41] was the first attack that showed the viability of
Rowhammer exploits from more restricted environments and programming languages
like JavaScript. The basic concept is the same as in the first kernel privilege escalation.
Rowhammer.js tries to hammer a page table to gain full access to the memory. It does
this however, without access to /proc/self/pagemap for physical address translation
and no cache flush instruction. To get contiguous memory and find adjacent rows, the
exploit takes advantage of the behavior of Firefox and Google Chrome that use huge
pages for large typed arrays. The huge page borders can be found with a timing side
channel measuring added delay from the page fault when a new page starts. Rowham-
mer.js is splitted into an offline and online phase to perform efficient cache eviction.
During the offline phase, a tool tries to learn the most efficient eviction set and access
pattern automatically on many different systems. Later in the online phase, when at-
tacking a system, the exploit tries all learned eviction sets and access patterns and uses
a timing side channel to find one that is working and uses that to hammer.

Self-Evicting Rowhammer (SMASH)

Self-Evicting Rowhammer is a technique presented by de Ridder et al. [29] that com-
bines cache eviction with the dummy accesses required for the many-sided Rowhammer
patterns to defeat TRR [31].

SMASH is a Rowhammer exploit that builds on the findings of TRRespass to ham-
mer TRR memory from JavaScript. Some many-sided Rowhammer patterns found by
TRRespass access up to 19 rows which is too much for eviction-based hammering. Ad-
ditionally, huge pages are not large enough to span over all rows required for some
many-sided patterns.

To solve the first obstacle, de Ridder et al. [29] developed self-evicting Rowhammer. It
uses the same accesses to bypass TRR and to evict the accessed cache lines from the
cache. In contrast to Frigo et al. [31], they did not find any dependency of the row
locations within the bank on the number of bitflips. Therefore, the requirement for the
eviction set is only to evict the aggressor rows and access the memory an additional N
times on rows in the same bank. N being the number of accesses required to break the
targeted TRR implementation. A 2 MB huge page is not large enough to build such
eviction sets as it contains only four congruent cache lines. To get more congruent cache
lines, they use a technique called huge page coloring to find huge pages similarly mapping
to the LLC.
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The downside of a self-evicting pattern is that the number of accesses required to evict the
cache is often higher than the accesses required to break TRR. Thus, these additional
accesses not required for TRR only slow down the hammering. To counter this, the
eviction pattern also includes cache-hit accesses to decrease the perceived associativity of
the LLC. Memory controllers have some flexibility in their timing of REFRESH commands
sent to the memory. To improve performance, they try to send them when there is
no memory activity, for example, during cache hits. However, it is important that the
REFRESH commands are not sent before all accesses of the many-sided Rowhammer are
done to trick the sampler. This is achieved by distributing the cache hit accesses evenly
over the hammer accesses and the addition of NOPs that trigger the memory controller
to send the REFRESH command at the correct time [29].

With the ability to produce bitflips from JavaScript on TRR memory, de Ridder et al. [29]
use the same exploit technique presented in GLitch [30] to obtain full access to the
memory of 64-bit Firefox.

4.3.2 Hammer Pattern

The basic idea behind Rowhammer is to flip bits by creating electrical disturbances
inside the DRAM chips that inject electrons into transistors of other rows, and capacitive
crosstalk between wordlines. Since Rowhammer was first described in 2014 [52], many
access patterns with different properties were found. The most important ones are shown
in Figure 4.2. The red rows are the aggressors and the blue rows the victims.

Single-Sided

Single-sided Rowhammer (Figure 4.2a) was the first pattern found by Kim et al. [52],
using two or more aggressors in the same bank with a distance greater than 2. This
pattern is easy to achieve because rows on the same bank can be found with a timing
side channel and no further physical address information about the aggressors is required.

Double-Sided

Double-sided Rowhammer (Figure 4.2b) sandwiches one victim between two aggressors,
thus greatly increasing the electrical disturbances and therefore, the bitflip count. It was
first used by Searborn et al. [75] in their two exploits against the Google Chrome NaCl
and the Linux kernel. The increased bitflip probability comes with the added complexity
that parts of the physical address and at least basic knowledge of the DRAM mapping
functions are required to be able to select the aggressor rows precisely.

One-Location

Kim et al. [52] explained in 2014 how accesses to at least two aggressors on the same
bank are required for Rowhammer. The reason being that the last accessed row is kept
in the row buffer and served from there to save time and energy. Four years later,
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(d) Many-Sided (e) Half-Double

Figure 4.2: Depiction of five notable Rowhammer patterns. The red rows
are the aggressors, the blue rows the victims and the yellow rows for dummy
accesses. In the dark blue row probability of a bit flipping is higher than in
the light blue rows.

Gruss et al. [39] found one-location Rowhammer that can, on some systems, flip bits
with only accesses to a single row in a bank.

Keeping the last accessed row in the row buffer improves performance if multiple accesses
to addresses in close proximity happen frequently. If however, another row is accessed,
the latency is increased because the row currently in the row buffer must be closed before
opening the new one. On CPUs with many cores, this increased latency can outweigh
the advantage of keeping a row open, which is the reason why Intel uses a closed-row
policy on these CPUs. On systems with a closed-row policy, the row is not kept in the
row buffer but written back (closed) after every access. This is what enables one-location
Rowhammer.

One-location Rowhammer produces fewer bitflips than double-sided Rowhammer but
has the big advantage of being more stealthy. As a result, many proposed Rowhammer
countermeasures from that time tried to detect Rowhammer with as little false positives
as possible by looking for frequent accesses to at least two rows in a bank which is
subverted when accessing only one row [20,32,45].
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Many-Sided

Most modern DDR4 memories come with a Rowhammer countermeasure called TRR.
It is described in more detail in Section 4.3.5. TRR tries to count the accesses to every
row in a refresh cycle and refresh neighbors of rows that were activated above a given
threshold, the MAC. This works well for all previously mentioned hammer patterns but
is possible to circumvent with new TRR-aware patterns.

The implementation on most DRAM modules does, however, not count the accesses for
every single row because that would be too costly. They usually use a system of samplers
and an inhibitor that can be bypassed with more complex access patterns. TRRespass
finds patterns automatically for 70% of DRAM modules on the market [31]. The same
technique is also used in the Smash exploit from JavaScript together with cache eviction
(Section 4.3.1) [29].

Half-Double

Half-double is a novel Rowhammer pattern, discovered by Qazi et al. [71] in 2021, that
is not only able to circumvent TRR on some DDR4 modules but is enabled by the
additional refreshes done by TRR [71].

The half-double pattern consists of two pairs of aggressor rows, two near aggressors
directly adjacent to the victim row and two far aggressors in the next rows. To hammer,
only the two far aggressors are repeatedly accessed by the attacker. This causes TRR
to refresh the near aggressors, which amplifies the electrical disturbances and causes
bit flips in the victim. To test their hypothesis, that the additional accesses to the near
aggressors done by TRR are required and it not being a simple distance-two Rowhammer,
Qazi et al. [71] used a FPGA platform to have full control over the commands sent to the
DRAM module. With it, they deactivated TRR by not sending any refresh commands
and did not observe any bit flips.

We tried to increase this effect further by additionally accessing the near aggressors
when hammering, but this did not increase the amount of bitflips. When the dilution
became to small the bitflips decreased because TRR started to refresh the victim row
(Section 5.4.3).

4.3.3 Hammering with the GPU

GLitch by Frigo et al. [30], is the first Rowhammer exploit from JavaScript on mobile
devices, which utilizes the integrated GPU to build high precision timers and hammer the
memory. Previously shown Rowhammer exploits from Javascript [21,41] had to use CPU
cache eviction, which is too slow on ARM devices to induce any bitflips. Additionally,
the timer precision was decreased in all major browsers due to found side channel and
Rowhammer attacks, making the detection of page boundaries and contiguous memory
areas more difficult. GLitch tackles both obstacles with the help of the integrated GPU
in the mobile SoC which any website can access with JavaScript and the WebGL API.
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With high precision timers not being available anymore in modern web browsers [1, 26,
84], GLitch identifies four new high precision timing sources based on WebGL. Two
are based on OpenGL extensions to measure the performance of applications and their
availability is dependent on the GPU driver. The other two utilize functions used for
synchronization between the CPU and GPU that cannot be deactivated because they
are part of the WebGL2 standard.

Similarly to CPU-based Rowhammer attacks, cache eviction is required to access the
DRAM repeatedly from the GPU. Frigo et al. [30] reverse-engineered the cache architec-
ture with the help of the GPU’s performance counters of an Adreno 330 GPU used in
most high-end smartphones of the time. The cache consists of two non-inclusive levels
with a simple FIFO replacement policy.

The Adreno 330 GPU operates on virtual memory, which requires a way to get physically
contiguous memory to be able to use the double-sided Rowhammer pattern. Because
the GPU does not use huge pages, Frigo et al. [30] utilizes their GPU timers to build a
side channel to detect contiguous memory allocated by the Linux buddy allocator.

With a cache-eviction strategy and physically contiguous memory, they are able to flip
bits with Rowhammer on all three mobile devices they tested. On the Nexus 5, they
achieved 23.7 1-to-0 flips/min and 5 0-to-1 flips/min and used these to build an exploit
to escape the Firefox Javascript sandbox. The exploit is based on the way different data
types are saved in JavaScript, called NaN-boxing. Because of NaN-boxing, references
to objects can be transformed into doubles and back with only one bitflip each. This
is used to build fake typed arrays and get access to the whole process’s memory. The
technique is described in more detail in Section 4.4.3 [30].

4.3.4 Hammering over the Network

Nethammer by Lipp et al. [58] showed at the same time as Throwhammer [78] that flip-
ping bits on a remote machine with Rowhammer over the network is possible. Netham-
mer uses the package handling code to hammer, Throwhammer hammers directly on the
target through remote DMA accesses.

The network driver executes code for every received network packet, which must be
loaded from the DRAM every time. This code is however cached after the first exe-
cution and cache flushing or eviction is not easily possible without code execution on
the target. Intel Cache Allocation Technology (CAT) is a quality of service feature for
server platforms that allows limiting the number of LLC cache ways every CPU core
can use. If this is enabled on the target system and the network driver code runs on a
core with only one LLC cache way, this code can already be enough to evict the cache,
making Rowhammer possible. The difference to other exploits is that bitflips cannot
be targeted. Random bitflips however, can do a lot of harm. They can modify kernel
data or code, leading to crashes or data in file system drivers which can corrupt data on
disks. Lipp et al. [58] also noticed the crashing of various user space programs and the
permanent modification of user credentials which broke the ssh login for a user.
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4.3.5 Target Row Refresh (TRR) Mitigation

ECC memory was not designed as a countermeasure against Rowhammer and is there-
fore not effective as a mitigation. TRR on the other hand, was developed solely as a
reaction to the increasing threat coming from Rowhammer. The concept is relatively
simple, but as shown recently, the way it is implemented on most DRAM modules weak-
ens the protection, does not prevent Rowhammer attacks [31] and can even support
hammering [71]. Details about the behavior and implementation of TRR can be found
in Section 3.3.4.

TRRespass is a black box fuzzer developed by Frigo et al., that finds access patterns
automatically that defeat TRR on 1/3 of all DRAM modules tested by them. The fuzzer
accesses patterns with different cardinality and location. The cardinality is the number of
aggressor rows in the pattern. To reach 50k activations each the maximum cardinality is
28, with a tRC ≈ 45 ns (time between REFRESH commands) and a refresh interval of 64 ms.
Some modules they tested responded differently to patterns with the same cardinality
but different aggressor locations, probably due to internal optimizations. The fuzzer is
therefore also randomizing the location of the aggressors.

TRRespass was able to find Rowhammer access patterns on 13 of the 42 modules they
tested, with a cardinality ranging from 3 to 19 on modules of all three vendors after
running it for 6 hours on every module. Frigo et al. [31] note that this does not mean
that the other modules are not vulnerable, but that it can only be a matter of more
prolonged testing or a better fuzzing strategy to find patterns for these modules.

Frigo et al. [31] were also able to find patterns on 5 out of 13 smartphones with LPDDR4x
memory. For this test they did not have control over the location of the aggressors due
to limitations imposed by the systems. [31]

A novel hammer pattern called half-double Rowhammer by Qazi et al. [71], that flips bit
with the help of TRR is described in Section 4.3.2.

4.4 Exploitation

Until here, we discussed concepts and techniques required to flip bits in the DRAM with
Rowhammer. This in itself, however, is not enough to compromise an operating system
or sandbox. To do so, specific bits, depending on the kind of exploit, must be flipped.

Most known attacks aim for privilege escalation. These include gaining kernel privileges
from an unprivileged process [39, 75, 80], escaping from a JavaScript sandbox to have
access to the web browser’s memory [29, 30, 75] or escape from a virtual machine to
have access to the memory of the host and other virtual machines [83]. The different
techniques used by exploits can be categorized into three groups page table flipping,
instruction flipping and type flipping. Additionally to these privilege escalation exploits
an exploit was presented that can read arbitrary memory [55] and exploits that aim for
a denial of service by hammering random memory [39,58].
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Figure 4.3: Simplified example of page table flipping with only one level
of pages tables shown. After successful exploitation (b), page table 2 is
writeable through virtual address 1.

4.4.1 Page Table Flipping

The goal of page table flipping is to flip a bit in the page frame number (PFN) of a page
table entry (PTE) making this PTE point to a page table [75]. This can be another
page table belonging to the process or the page table containing the PTE itself. If that
is the case, the attacker has read and write access to the second page table through the
first one. With this setup, any page in the physical memory can be accessed by pointing
the second page table to it.

Page table flipping is illustrated in Figure 4.3. It is simplified by showing only one level
of page tables in contrast to the three or four levels that are typical and every page table
is only mapping one page. At the beginning (Figure 4.3a) in a correct mapping vaddr1

maps to paddr1 (solid line) through PT1 (dashed lines), same for vaddr2. To be able to
hammer a page table entry, the attacker needs access to rows adjacent to a page table.
Ways to achieve this are discussed in sections 4.2.1 to 4.2.4. In this example the attacker
controls the two rows aggr1 and aggr2 below and above of PT1. By hammering with
these two aggressors, a bit is flipped in the PFN-field of the PT1, making it point to
another page in the physical memory. If the whole memory contains many page tables,
the chances are fairly high that the attacked PTE will point to a page containing another
page table. This is illustrated in Figure 4.3b. The PT1, which we call the address page
table is pointing to the page table containing PT2, which we call the access page table
giving the attacker read and write access to page table 2 through vaddr1. This gives
the attacker the ability to choose where vaddr2 is mapped to by writing any PFN into
the PT2, resulting in full access to the whole physical memory. There are multiple ways
to obtain a page table that is in a row with bitflips und between to aggressor rows
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that are described in Sections 4.2.1 to 4.2.4. When the hammering was successful, the
access to the whole physical memory can then be exploited in different ways detailed in
Section 4.4.

A very similar technique named page table replacement can be used to escape paravir-
tualized Xen virtual machines [83].

A successful first step of the page table flipping exploit gives the attacker the means
to read and write the whole physical memory. From there, the possibilities are almost
endless. Some techniques are presented here ordered by the universality of the attack.

Dump Memory

The least complicated attack is to read and dump the contents of the whole physical
memory. It can contain many things interesting for an attacker like cryptographic keys,
passwords or other private information. The data gathered can then be, for example,
uploaded to a remote server for further investigation. To read the memory efficiently,
all 512 PTEs can be set to 512 consecutive physical pages. This enables reading the
memory in chunks of 2 MB.

Modify SUID-root Binary

If the attacker wants to gain root privileges, one possibility is to modify a binary in the
memory that has the set-user-ID (SUID) bit set and is owned by root. If the (SUID)
bit is set, a binary executes with the permissions of the owner of the binary and not
the user that called it. This is, for example, the case for sudo, which needs to run
as the root user to be able to grant root permissions or mount, which must be able to
mount user-mountable disks. To modify the binary, its physical address in the memory
is required. Then a malicious shell code can either be inserted directly to be executed,
or as a less invasive way, the checks done in sudo can be removed to allow every caller
to gain root privileges.

Seaborn et al. [75] used this technique to gain root privileges. To get the physical address
of their target, they simply mapped it into their memory and used /proc/self/pagemap

to translate the virtual address. Because Linux is using shared pages for binaries, the
modified code is then executed on the next call. This is, however, not possible anymore.
Another method is to search the binary in the memory. The target binary can still be
mapped and read, giving the attacker a clear picture of the contents it is looking for in
the physical memory. In a second step, the page to look for can be found by iterating
over the memory.

Modifying a SUID-root binary is not possible if the attacker process is running in a
container that does not give access to any (SUID)-root binaries. This is the case for
Android apps running on Chrome OS.
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Edit UID Field

Another way to gain root privileges is to edit the user-ID field of the attacker process
inside the kernel data. Van der Veen et al. [80] used this technique to gain root privileges
on Android with Drammer . What makes this attack more challenging than the previous
one is that it is harder to find the structure in the memory because pages can not be
simply compared. The kernel stores multiple credential-related fields, including among
others, its real, effective, and saved user and group IDs [80]. Android gives every app
unique UIDs summing up to 24 known bytes and also the alignment of the struct is
fixed. This made it possible for Drammer to find the struct and modify it in around
22 seconds on a Nexus 5. Samsung is especially protecting the struct cred on their
Android phones with a hypervisor. This makes the attack a bit more difficult but does
not protect against it [43].

Modify Kernel Code

The most invasive way to exploit the full read and write access is to inject shell code
directly into the kernel by modifying it. What made this easier than modifying the UID
field to gain root privileges is that the location of some parts of the kernel could be
obtained with unprivileged instructions. The interrupt descriptor table on x86 contains
the physical address of all interrupt handler registers by the operating system and its
location could be read with the SIDT (Store Interrupt-Descriptor-Table) instruction from
user space. Since Intel Cannon Lake and AMD Zen 2, the SIDT instructions can be
disabled in user space by setting the UMIP (User Mode Instruction Prevention) bit,
which is done in Linux [14].

4.4.2 Instruction Flipping

Another way to exploit Rowhammer is to flip a bit in an instruction of another process or
a sandbox which changes the victim’s execution in an exploitable way. This can be the
change of a register argument to jump to another unconstrained address or the skipping
of the password check in the sudo binary. The former was used by Seaborn et al. [75]
to escape the NaCl sandbox of the Google Chrome Browser. The latter, named opcode
flipping, was first used by Gruss et al. [39].

Operand flipping

Native Client (NaCl) was a sandbox in Google Chrome that was able to run compiled
native code in websites and was since deprecated [34]. One of its sandboxing features,
among others, was the restriction of all indirect jumps to 32-byte-aligned addresses.
Hammering the code that is enclosing every jump to enforce the alignment can change
register numbers and therefore enable unrestricted jumps. It is then possible to jump to
instructions hidden inside the operands of other instructions, for example, syscall inside
a mov [75].
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1 andl $~31, %eax // Truncate address to 32 bits and mask to

2 // be 32-byte -aligned.

3 addq %r15 , %rax // Add %r15 , the sandbox base address.

4 jmp *%rax // Indirect jump.

Listing 4.1: The code of an aligned indirect jump in NaCl.

1 48 b80f05eb0cf4f4f4f4 movabs $0xf4f4f4f40ceb050f ,%rax

Listing 4.2: This mov instruction hides a syscall instruction 0f 05 at offset 2.

Operand flipping was used by Seaborn et al. [75] to escape the NaCl sandbox of the
Google Chrome browser in the first description of two exploits based on Rowhammer
in 2015 [75]. NaCl was deprecated in 2020 and is not supported anymore since Juni
2021 [34]. However, the exploit is still interesting because similar techniques could still
be used for novel exploits. NaCl was a sandbox to run native code inside the Chrome
browser at near-native speed. To sandbox native code from the user space, it used
various tricks, including the restriction that all jumps have to be 32-byte aligned. This
is ensured by the following instruction sequence used for every sandboxed indirect jump.

By, for example, flipping a bit in the register operand of the jmp instruction to change
rax to rcx jumping to an unaligned address is possible. NaCl programs can use a
special API to modify code dynamically. This is used to fill the memory with 250 MB of
sandboxed indirect jump instructions. This memory area is then hammered to flip any
of the operands of the instruction. NaCl programs can also read their own code, thus
after hammering the code, it can be checked for successful bitflips. If the exploit finds
an exploitable bit flip, it jumps to an unsafe instruction hidden inside another safe one.

Opcode flipping

Opcode flipping was first presented by Gruss et al. [39] to flip bits in an SUID-root
binary which changes the program flow in an attacker’s intended way. Until then, all
exploits used some form of victim spraying where bug portions of the memory are filled
with exploitable data like a page table or jump instructions. However, this is not possible
with binaries because the kernel puts them in the memory once and maps all read and
execute accesses to this one physical location. To counter this problem, Gruss et al. [39]
presented memory waylaying, a novel technique to put a victim binary in an attacker-
controlled location.

To exploit opcode flipping, the first step is to find an exploitable bit flip in an SUID-
root binary. Flipping a bit in an instruction often leads to a similar instruction with
slightly changed or inverted behavior. We are taking the example from Gruss et al. [39]
to show in Table 4.1 that many bits in an instruction lead to other valid and valuable
instructions. Out of the 255 possibilities for the following byte, only 21 are illegal
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Instruction Opcode Binary Description

JE 0x74 01110100 jump if equal
JNE 0x75 01110101 jump if not equal
JBE 0x76 01110110 jump if below or equal
JO 0x70 01110000 jump if overflow
JL 0x7C 01111100 jump if lower

PUSHQ 0x54 01010100 push quad word
XORB 0x34 00110100 XOR byte
HLT 0xF4 11110100 halt

0x64 01100100 prefix

Table 4.1: Instruction outcome when flipping one bit of the x86-64 JE

instruction [39].

instructions. Gruss et al. [39] located 29 instructions in the sudo binary where a bit flip
causes either the skip of the check if the calling user is in the sudoers file or the password
check.

4.4.3 Type Flipping

A third technique to exploit Rowhammer bit flips applicable in type-safe programming
languages like Java or JavaScript is type flipping.

Multiple exploits used this technique to escape the JavaScript sandbox of web browsers
to get read and write access to the virtual memory address space of Microsoft Edge or
Mozilla Firefox [21,29,30]. When using the analogon that the operating system kernel is
to a userland process, what the JavaScript engine is to a JavaScript program, the exploit
is actually reasonably similar to page table flipping (Section 4.4.1).

Firefox uses NaN-boxing to store double, integer and pointer values in a 64-bit word with-
out explicit type information. IEEE-754 double-precision floating-point values (doubles)
are 64-bit wide and use one sign-bit, 11 bits for the exponent and 52 bits for the fraction.
If all 11 exponents bits are 1 the value of the double is Not-a-Number (NaN). Addition-
ally, the highest bit of the fraction defines if the NaN is signaling (0) or quiet (1). The
content of all other bits is not prescribed by the standard and can have any value. This
means that 51 bits of a double can be used to store any arbitrary information if its raw
value is higher or equal to the mask value 0xfff80000 << 32 [64].

By flipping one of these 13 highest bits from 1→ 0 a pointer value can be transformed
into a double and by flipping a 0 bit from 0→ 1 back into a pointer, respectively. This
mechanism is used three times to gain arbitrary read and write access within the Firefox
process.

Javascript has typed arrays that are used to store binary information. The goal of the
exploit is to build a fake typed array inside a typed array and have a pointer pointing to
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it. With that, it is possible to write the header of the fake typed array to have it point
at an arbitrary location within the web browser’s memory.

To build this fake typed array, the attacker first needs the header of a real typed array
to copy it. To get it, a JSString is used, its header contains only the address to the
string data.

1. Use memory templating to find one 1→ 0 and one 0→ 1 bit flip.

2. Create an inlined typed array. An inlined typed array has its header next to the
data.

3. Use the 1→ 0 bitflip to change the reference of the typed array into a double. This
breaks address space layout randomization and reveals the address of the header
of the typed array. Because it is inlined, the addresses of data inside the typed
array can simply be calculated with an offset.

4. Build a fake JSString inside the typed array. A JSString has a simple header with
only an address pointing to the data, which is set to the typed array.

5. Use the 0 → 1 bitflip to transform a double to a reference pointing to the fake
JSString. The address of the JSString can be derived from the address of the
typed array.

6. Read the header of the typed array through the JSString. At this point, the
JSString could be used to read the whole memory, but it is a read-only primitive.

7. Build a fake non-inlined typed array inside the typed array pointing to whatever
the attacker wants to access.

8. Use the 0→ 1 bitflip one last time to create a reference to the fake typed array.

Now the pointer of the fake array buffer can be edited through the first array buffer and
put everywhere to read and write memory. Because the garbage collector could crash
when encountering these fake objects, the fake array buffer is only used to corrupt the
header of other valid objects.

4.4.4 Read Flipping

RAMBleed by Kwong et al. [55] was the first attack that exploited Rowhammer to
read the memory of other processes running on the same hardware. It uses the fact
that bits flip depending on the content of the aggressor rows. This data dependency
means that a bit usually flips from 0 → 1 when the aggressor bit is 1 and from 1 → 0
when the aggressor bit is 0. RAMBleed can read memory with 3-4 bits per second.
Kwong et al. [55] demonstrated the successful recovery of an RSA 2048-bit private key
from an OpenSSH server.

The attack is working by first templating the memory to find as many weak cells as
required for the target. Then for every bit, the following memory arrangement is built
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Row Activation Page Secret

Unused Sampling Page

Row Activation Page Secret

Figure 4.4: The page structure used for RAMBleed. The row activation
pages are used to hammer the sampling page with the secret.

and the victim page is put into the two secret pages with Frame Feng Shui.

This arrangement is possible because multiple pages or parts of them are usually in the
same row, depending on the dram mapping functions. The sampling page is then ham-
mered by accessing the row activation pages and checked if bits flipped in the sampling
page. From these bits the secret can be derived. This does also work with ECC memory
because the flips are actually not required to persist on the sampling page. ECC bitflip
correction adds additional latency to a read which can be measured and used as a side
channel to detect if a bit in the sampling page flipped without reading it.
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Chapter 5

The Half-Double Exploit

In this chapter, we will present our end-to-end half-double Rowhammer exploit targeting
Chrome OS. The exploit combines novel attack techniques to compromise the device in
under 12 hours from an unprivileged Android app. In Section 5.1, we give an overview
of Chrome OS, its security design and the Android runtime. We discuss possible attack
scenarios with their different characteristics and define the threat model. Finally, we
describe the attack challenges.

Our exploit has to overcome four challenges that are detailed and the respective solu-
tions explained in the following sections. With side-channel-assisted memory allocation
(cf. Section 5.2) we are able to obtain physically contiguous memory and unscramble the
DRAM rows without the need of huge pages. In Section 5.3, we describe how we use
spray children to bypass virtual address space limitations that come from a performance
optimization on ARM. Our target device uses LPDDR4x ECC memory. ECC memory
makes bit flips partially dependent on the data in the victim row. In Section 5.4, we
propose an alternative to bit-flip templating, blind hammering, to solve this problem. A
disadvantage of blind hammering is that bit flips are less predictable, and therefore, the
chance of corrupting a page table entry is relatively high. With robust bit flip verification
using speculative execution (cf. Section 5.5), we are able to protect our exploit process
from being killed in a case of a data-abort interrupt.

In Section 5.6, we discuss factors slowing down our exploit and evaluate the performance
and real-world threat. We show how it can be used to dump the device’s memory after
a successful compromisation. Finally, we discuss non-Rowhammer related countermea-
sures already in place that reduce the threat of our exploit and possible countermeasures
that could further decrease its impact.
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5.1 Attack Scenario and Threat Model

The main target of the exploit is the Kukui Chromebook. Kukui is the name of the
mainboard that is used in multiple Chromebooks, the ASUS Chromebook Detachable
CM3, Lenovo Chromebook 10e and Lenovo Chromebook Duet [11]. They are powered
by a MediaTek Kompanio 500 (MT8183) CPU with four Arm Cortex-A73 and four
Arm Cortex-A53 cores and 4 GB of LPDDR4x. We tested the exploit on two Lenovo
Chromebook Duets.

5.1.1 Chrome OS

Chrome OS is an operating system by Google, announced in 2009. It was first conceived
as a web-only operating system that mainly runs web applications for low-power, low-
cost netbook-like devices [67]. Since its introduction, its market share recorded steady
growth and in 2020, it took over Apple’s Mac OS as the most popular desktop operating
system [70].

OS Design and Security

Chrome OS was initially based on Ubuntu and developed with the help of Canonical. The
base was changed ahead of the first official release to Gentoo. The reason for this step
was Gentoo’s package manager Portage that is used to build the whole operating system.
Nowadays, Chrome OS uses a Linux kernel close to upstream but kept Portage [81]. The
Chrome OS version 90.0.443.218 running on our Kukui uses Linux version 4.19. Parts
of Chrome OS are open source under the name Chromium OS.

Google is focusing on security in Chrome OS since its creation, with the goal of building
the most secure consumer operating system [62]. To achieve that, Chrome OS uses
operating system hardening techniques like process sandboxing, toolchain hardening,
forced auto-updating and an integrity-checked read-only root partition. Chrome OS
was also the first operating system to enforce a fully verified boot path in its first
release [2, 62]. And these measures take effect, Chrome OS was affected by only 45
security flaws in its life time [3]. This number is small when compared to over 2700
vulnerabilities in OS X since 2001 [6] and over 2200 in Windows 10 alone [7].

Chrome OS also comes with a developer mode, allowing the user to remove some security
features like the verified boot and read-only root partition to be more flexible [4].

Android Compatibility

Since 2016, Chrome OS supports running Android apps, with the ability for users to
directly install them from the Google Play store [79]. Chrome OS uses a Linux con-
tainer that contains the Android runtime and is called Android Runtime for Chrome++
(ARC++). To comply with the strict sandboxing rules of Google in Chrome OS, this
container is isolated using namespace, seccomp, alt syscalls, SELinux, etc. to keep the
attack surface as small as possible [33].
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5.1.2 Attack Runtimes

Chrome OS was initially designed as a web-browser-only operating system, but it comes
with various ways to run applications in the current version. Apart from web apps,
Google added support for Android apps and the Google Play store in 2016 [79] and the
official support to run Linux applications in virtual machines was added in 2018 [24]. In
the following paragraphs, we will detail these different application runtimes and describe
their characteristics and features.

Websites can contain complex applications developed in JavaScript and it has been
shown before that Rowhammer exploits can be built in JavaScript to attack the operating
system [41] or the browser [30]. When we started planning the exploit, no exploit written
in JavaScript defeating TRR was known and the first tests revealed that half-double
Rowhammer leads to almost no bitflips with cache flushing let alone cache eviction.

Chrome Apps (NaCl) were an integral part of Chrome OS and also part of the
Google Chrome browser on other operating systems. Packaged Chrome Apps, down-
loaded from the Google Chrome Web Store, have more permissions than normal web-
sites, including the use of the NaCl runtime, which allows running native code inside the
Chrome browser. Seaborn et al. [75] showed a Rowhammer exploit for NaCl in 2015.
Chrome Apps will, however, not be supported anymore from June 2022 in Chrome OS
and are already unsupported since June 2021 on all other platforms [56]. This makes
NaCl apps a bad choice as an attack runtime.

Android Apps. Google started to support Android Apps on Chrome OS in 2014 with
the android runtime for chrome (ARC) which was a NaCl application and therefore fairly
limited. In 2016 Google presented ARC++, which runs Android applications in a Linux
container [33, 79]. The goal of ARC++ was to run every app from the Play Store and
it therefore comes with no limitations, including the possibility to run native code with
the NDK. The NDK can be used to mount Rowhammer exploits like shown by Van der
Veen et al. [80] in 2016. More modern hardware and the Android runtime running in a
container do however, still require a new development of the exploit.

Linux applications in virtual machines. Chrome OS allows users to start a virtual
machine with an image provided by Chrome OS called Termina. Termina is a stripped-
down Chrome OS Linux kernel with basic userland tools [33]. Users can then run software
in LXC inside the Termina virtual macine. Users have full privileges inside these virtual
machines, but Chrome OS does not allow the modification of the kernel. For example,
the loading of kernel modules is not possible. Although a Rowhammer attack is probably
fairly easy to mount, it stays restricted to the virtual machine. Hypervisor escapes were
achieved with Rowhammer, but they are beyond the scope of this thesis [72].
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Linux applications in Chrome OS. With Chrome OS being a Gentoo based Linux
distribution, it is possible to run custom applications directly on Chrome OS. However,
the execution of binaries is disabled for all partitions except /, but this root partition is
read-only and integrity checked on all Chromebooks. To make it writable, the developer
mode of the Chromebook must be entered to disable secure boot, which deletes all user
data. This makes Linux applications running directly on Chrome OS not practical for a
Rowhammer exploit targeting normal users. It is, however, useful during development
because it allows access to the whole system, including the loading of kernel modules.

An exploit in JavaScript would have had the biggest impact because it is the easiest way
to expose a victim to it. However, we came to the conclusion that it was not feasible for
us at that point in time. With the Android NDK it is possible to run native code in a
container on Chrome OS, which is a great basis for an exploit. It could be hidden in an
Android App that is likely to be installed by many users. For example, a tricky puzzle
game, an app that does funny AI face transformations or something useful like a ruler
to reach hundreds of millions of users [5].

5.1.3 Threat Model

Our threat model consists of an up-to-date Lenovo Chromebook Duet also called Kukui
running Chrome OS version 90.0.443.218 without any known software vulnerabilities.
The user downloads an inconspicuous app from the official Google Play Store and runs
it for some time while solving a tricky puzzle game. The app uses Rowhammer to gain
full access to the physical memory of the device and can use that to gain root privileges
or extract user passwords and other confidential information.

5.1.4 Attack Challenges

The exploit attacks Chrome OS from native code running in an Android app with the
NDK. We had to solve four challenges that we describe and discuss in the following
sections. The first requirement is the access to contiguous memory regions. To not
depend on huge pages, we developed a method to detect contiguous memory and reverse-
engineer physical address bits to break row scrambling, which we describe in Sections 5.2.
The reduced virtual address space on the Kukui requires the help of child processes to
fill the memory with page tables. Section 5.3 describes the operation of these spray
children. The LPDDR4x memory of the Kukui includes ECC. In Section 5.4, we outline
the problem this imposes on memory templating and propose a solution, which we
call blind hammering. The exploit uses the newly discovered half-double pattern by
Qazi et al. [71] to hammer the TRR memory. Section 5.4.3 details this approach and
provides bit flip measurements from two devices. The blind hammering technique bears
the risk of page table corruption that can cause interrupts that terminate our attack
process. To prevent this, we introduce two novel ways to robustly verify the integrity of
page table entries in Section 5.5. Finally, we describe the further exploitation with our
access primitive we got through Rowhammer in Section 5.6.1.
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Interestingly, running the exploit inside the Android NDK did not add any obstacles.
The only difference in the code for the NDK versus the native one lies in obtaining the
shared memory file for page table spraying. Android does not support the /dev/shm file
system. It has its own interface called ASharedMemory that returns, similarly to opening
a shared memory file, a file descriptor that can be mapped with mmap [12].

During development, we used a helper process running with root privileges that simplified
debugging and prototyping of the exploit app. It uses setns to put itself into the
namespace of the ARC++ container and can then communicate with the NDK process
through pipes to provide access to /proc/pid/pagemap and the PTEditor [74].

5.2 Side-Channel-Assisted Memory Allocation

The exploit uses the half-double Rowhammer pattern [71]. This pattern requires access
to at least five physically adjacent rows with the center one being the victim. Many
exploits utilize huge pages to get physically contiguous memory and access to the lowest
21 bits of the physical address [29, 31, 41]. Chrome OS has transparent huge pages
through madvise activated by default and they can also be used inside NDK applications.
But relying on transparent huge pages has the big disadvantage that it is simple to
deactivate them with a small negative performance impact. To make our exploit more
robust, we developed a technique to detect contiguous memory chunks in a large mapped
memory area. Additionally, we can reverse-engineer some physical address bits that help
us to almost completely defeat the row scrambling inside the DRAM.

5.2.1 Contiguous Memory Detection

To get physically contiguous memory we allocate a large block of memory and search
it for contiguously mapped pages. For this, we combine the timing side channel to find
rows in the same bank described in Section 4.1.1 together with knowledge from the
reverse-engineer DRAM mapping functions. Equation 5.1 shows the DRAM mapping
functions we reverse-engineered with the help of the DRAMA tool from Pessl et al. [66].
The functions are also shown in Figure 2.4 in the Background section.

X0 = b8

X1 = b12 ⊕ b16

X2 = b13 ⊕ b17

X3 = b14 ⊕ b18

(5.1)

The mapping function has four output bits X0 to X3, which means that the Kukui’s
DRAM has 16 banks B0 to B15. X0 is only controlled by address bit 8, of which we
know the value from the virtual address and can therefore ignore it for the contiguous
memory detection. Calculating the output from the mapping functions X1 to X3 for
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P d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 . . .

P0 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 1 . . .

P1 8 7 8 11 8 7 8 11 8 7 8 11 8 7 8 3 . . .

P2 8 9 8 5 8 9 8 13 8 9 8 5 8 9 8 5 . . .

P3 8 7 8 7 8 7 8 15 8 7 8 7 8 7 8 7 . . .

P4 8 9 8 9 8 9 8 1 8 9 8 9 8 9 8 9 . . .

P5 8 7 8 11 8 7 8 3 8 7 8 11 8 7 8 11 . . .

P6 8 9 8 5 8 9 8 5 8 9 8 5 8 9 8 13 . . .

P7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 15 . . .

Table 5.1: The eight page distance patterns on the Kukui. There are four
unique page distances highlighted in blue.

increasing values of b12 to b18 gives the following bank mapping:

B0, B3, B2, B5, B4, B7, B6, B1, B0, B3, B2, B5, B4, B7, B6, B2, B3, B0, B1, B6, . . . (5.2)

Calculating the distance between equal banks for all eight banks gives the patterns P0

to P7 shown in table 5.1, which we call page distance patterns.

The page distance patterns P4 - P7 are equal to P0 - P3 shifted by eight. As we
only need the pattern and their unique page distance we can ignore patterns P4 - P7.
This is, however, the reason why we cannot reverse-engineer address bit b18 for the row
unscrambling in Section 5.2.2.

With these page distance patterns and a timing side channel to find rows in the same
bank available, it is easy to detect contiguous memory. b12 is the lowest bit changing
the bank, which is also the size of one page. So we loop over our memory with one page
distance and use the timing side channel to check if the page is in the same bank as the
first page in our memory. If we found a row in the same bank, we put its position in a list
and continue. While we loop over non-contiguous memory, the distances between these
pages will look random, but when memory mappings become physically contiguous, the
distances will match one of the four patterns P0 - P3 in table 5.1. Because the patterns
are short, pattern-matching can be done after every row found on the same bank without
a sophisticated pattern-matching algorithm. The loop continues until a found row breaks
the pattern and signals the end of the contiguous memory area.

The timing side channel compares the currently checked page with the first page in the
memory area. The random location of this first page determines the bank on which the
adjacent rows are found. In a second step, all rows for the remaining seven banks are
searched. For this, every already found row is marked by writing a known value into
the page. Then to find the next bank, we search the next page that is not marked and
use this page as the base for the timing side channel. From this page we loop over the
memory again, one page at a time, to find all the rows on the bank of this page. After
doing this seven times, all rows of all banks in the contiguous memory area are found.
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The speed with which we can scan through memory is mainly determined by the side
channel used to determine if two rows are in the same bank. On our target device we
can scan 19.05 MB s−1 (σn = 0.02) of memory for contiguity. Because we are scanning
contiguous areas eight times to find the rows on all banks the time it takes to scan the
whole memory is dependent on how many contiguous memory we find. It takes us on
average 24.7 s (n = 20, σx̄ = 2.7) to scan 1 GB of memory which finds 173 MB (n = 20,
σx̄ = 29) of contiguous memory on a freshly booted system.

5.2.2 Row Unscrambling

The memory in the Kukui uses a technique called row scrambling to complicate Rowham-
mer attacks. It works by applying a function to the row index bits to remap rows and
make it harder to find adjacent ones. The row scrambling function used on the Kukui
is shown in Equation 5.3.

ri ⊕ (ri[3]� 2)⊕ (ri[3]� 1) (5.3)

Bit 4 of the row index is XORed with bit 2 and 3. The row index starts at bit 15 of the
physical address, therefore the row scrambling function uses the physical address bits
16, 17 and 18. With the knowledge of these bits, the rows can be unscrambled.

In case of the availability of (transparent) huge pages, the unscrambling is a trivial task
because we have the 21 lowest physical address bits as the page offset. It gets more
difficult when huge pages are disabled and we have to use contiguous memory detection.
In that case, we have no knowledge about the address bits 12 and upwards available
right away. By using the DRAM mapping functions and the page distance patterns
of the different banks from the previous section, two of the three bits used in the row
remapping can be recovered leaving us with only two different possibilities for the correct
row mapping.

Bits 16, 17 and 18 that are already used in the DRAM mapping are also used in the row
remapping. We use these bits already indirectly for the calculation and matching of the
page distance patterns, and can therefore determine these three bits with a 50 percent
chance. This 50 percent chance comes from the fact that we cannot determine address
bit 18 because the patterns Px and Px+4 are equal and just shifted by eight.

To put this into practice, we assume we have a contiguous memory area in bank B0.
Like any other of the four distance patterns, it has one distinct distance that only exists
once per period, shown in blue in Table 5.1. In the case of B0 that is the distance 1
happening at the end. Two consecutive rows on bank B0 means that the values of X1

to X3 in Equation 5.1 stay 0 with a 1 added to b12. This can only happen if bits 12 to
18 are 1 and jump to 0. Table 5.2 shows the change of the bits for all four page distance
patterns at their unique distance.

In other words, when there are two consecutive rows on bank B0, the second row has
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Page From To
Distance b18 b17 b16 b15 b14 b13 b12 b18 b17 b16 b15 b14 b13 b12

1 B 1 1 1 1 1 1 B̄ 0 0 0 0 0 0

3 B 1 1 1 1 1 0 B̄ 0 0 0 0 0 1

13 B 1 1 1 0 0 1 B̄ 0 0 0 1 1 0

15 B 1 1 1 0 0 0 B̄ 0 0 0 1 1 1

Table 5.2: Reconstruction of physical address bits via the unique page
distances of all four patterns.

the address bits b12 to b18 all set to 0 and from there, these bits are easy to calculate for
all offsets from that address. If two consecutive rows are found on bank B4 the second
row has bit b18 set to 1 instead of zero, inverting the row scrambling result.

5.3 Bypassing Virtual Address Space Limitations with
Spray Children

In case of a TLB-miss, the MMU has to retrieve up to four levels of page tables from the
DRAM which slows down a memory access considerably. To improve performance, it is
possible on ARM to reduce the page table hierarchy to three levels. This optimization is
used on the Kukui and the current version of Chrome OS. The consequence is a smaller
virtual address space of only 512 GB. This is enough for every website and Android app
running on Chrome OS, but it imposes a restriction on the maximum amount of page
tables that can be created. Equation 5.4 gives the maximum size of physical memory
that can be filled with page tables.

VAS

#PTEs · page size
· page size =

512 GB

512 · 4 kB
· 4 kB = 262 144 · 4 kB = 1 GB (5.4)

In our testing, we discovered that our victim pages are often filled early in the page
table spraying and in these cases 1 GB of page tables is enough. However, having a page
table on the victim page is only the first requirement for a successful exploit. After
hammering a page table, at least one of its PTEs must reference another page table of
the attacker. The chance of this happening increases linearly with more page tables in
the memory. To solve this problem, we spawn child processes (spray children) that map
the same shared memory file as the parent process, filling the memory with additional
page tables.
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Spraying page tables runs at 79.39 MB s−1 (σn = 0.24) on average when using two or
more child processes on our Chromebooks. The memory is, therefore, filled with page
tables within less than one minute.

5.3.1 Child Functions

The spray children do not only spray page tables but also have additional functionality
that is required later in the exploit. To communicate with the parent process, which
controls the operation of the exploit, the children are connected with two pipes for read-
ing and writing. The children wait for new commands in a loop and return information
about the success of the operation after its completion.

Spray page tables The main functionality of the children is to create page tables
to fill the memory. The parent specifies how often every child should map the shared
memory file.

Check mappings After hammering one or multiple page tables, every child and the
parent have to go through all mappings of the shared memory file and compare it with
its expected content. If the hammering flipped a bit in a page table, the new page it
points to is found in this step.

Find access page table If a page table was found in the previous step, the corre-
sponding access pages must be found. These are the virtual pages that are mapped
through the accessible page table (address page table).

Set address page table random This sets the value of the first PFN in the address
page table to a random value within the range of the physical memory. It is required for
page table untying.

Dump memory The final exploit step which dumps the content of the whole physical
memory into a file. This must be implemented by every child because it can end up with
the address- and access page table after page table untying.

Clean up Tries to clean up as good as possible by restoring page table entries and
unmapping pages.

Exit Exits the child.

5.3.2 Page Table Untying

After successfully hammering a page table, the use of spray children entails that the
address page table and access page table can belong to different processes. But to access
the memory efficiently, both page tables should belong to the same processes. To enable
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that, some additional steps are required, which we call page table untying. The easiest
way to do that is to always give the address page table to the process that is already in
possession of the access page table.

In the first step, the process with the address page table (p2) sets the PFN to a random
value and the process with the access page table (p1) checks if it is pointing to a page
table. If it does, the access page table of p1 becomes its address page table and it uses
the same procedure used after successfully hammering to find the new corresponding
access page table. If it succeeds process p1 has an address and access page table. It can,
however, also fail if the PFN of the initial address page table was not pointing to a page
table of p1, but of another process. In that case, the untying is tried again and started
from the beginning with another random value for the PFN. This process is controlled
by the parent by sending commands to the children for every step.

5.4 An Alternative to Bit Flip Templating:
Blind Hammering

Kim et al. [52] showed that Rowhammer bit flips are repeatable because some cells
are more vulnerable than others. Many attacks use this property to split themselves
up into a templating phase that finds bit flips and an exploitation phase that exploits
them [29, 30, 41, 55, 75, 80]. This repeatability is reduced when ECC memory is used on
the system under attack.

Figure 5.1 visualizes the reduced repeatability, with eight bits that are error corrected
with single error correction, double error detection. The second cell from the right (c1)
flips only from zero to one, c5 flips only from one to zero. In the first example, both
cells can flip because they contain the vulnerable value and because two flips cannot be
corrected, the flips are persistent. In the second and third example, one cell does not
contain the vulnerable value resulting in only one bit flip that is corrected and therefore,
no flip is persistent.

This effect of ECC memory makes classical memory templating like it was used by many
previously shown exploits less effective. We developed two approaches to tackle this
problem, better templates and blind hammering.

5.4.1 Better Templates

We know that we want to hammer page table entries and have, therefore, an approximate
idea of what the content of our victims will look like. More than half of the bits of the
page table entries for our shared file mapping are always the same. We can use this
knowledge to make the victim content during templating as similar as possible to the
content we want to attack. To do this our two templates are 0x68000555555FD3 and
0x68000AAAAAAFD3. The bytes filled with 0x55 and 0xAA are where the PFN is located.
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Figure 5.1: Rowhammer bit flip correction of eight memory cells with ECC.
Bits only flip visibly if at least two bits in the victim have the correct value.

Simple Templates Better Templates

165

536

1,123 Templating Flips
PTE Flips

Figure 5.2: With better templates, more rows are found that lead to a bit
flip in a PTE. On our target device, templating with simple templates finds
1123 flips in the PFN bits after 10.000 hammers. Of these 1123 flips, 153
flip with PTEs in the victim row. Templating with better templates finds
536 flips of which 165 flip, when filled with PTEs.

If we hammer these templates with the opposite value (aggressors = 0x68000555555FD3,
victim = 0x68000AAAAAAFD3 or vice versa) we can make sure that bits only flip in the
PFN, because Rowhammer requires the bits in the victim and aggressors to be inverted.
However, this also reduces the number of bit flips we get.

If we hammer them with 0xAAAAAAAAAAAAAAAA and 0x5555555555555555 we increase
the bit flips, but there is a high risk of corrupting a page table entry by flipping bits out-
side the PFN. This is however not a problem, because we have robust bit-flip verification
to detect and avoid corrupted PTEs (cf. Section 5.5).

Figure 5.2 shows the results after 10.000 hammers with simple and better templates.
The chance of getting a bit flip in a PTE, after finding one during templating, is over
two times higher when using better templates.
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VN+F+F−N−VN+F+F−N−VN+F+

F−N−VN+F+F−N−VN+F+

Figure 5.3: Zebra pattern for a non-templating page table flipping exploit.

5.4.2 Blind Hammering

Our novel concept that does not depend on memory templating at all is blind hammering.
The idea is to create a zebra pattern of attacker-owned aggressor rows and victim page
tables spawning as much memory as possible. This zebra pattern is shown in Figure 5.3.
The victim rows are in blue and the aggressors in red. The half-double pattern requires
two aggressors on each side of the victim (V). Two near aggressors (N±) in light red
and two far aggressors (F±) in dark red that are swapped depending on the hammered
victim.

To build this pattern, we first have to be able to get contiguous memory areas through
huge pages or contiguous memory detection. In a second step, we unmap the victim rows.
Here it is crucial to not unmap every third page but to consider the DRAM-mapping
to unmap every third row. When the victims are unmapped, page table spraying with
spray children is used to fill as many victim rows as possible with page tables.

The attacker does not know which victims contain page tables and which victims contain
weak cells that flip, therefore the bit flips can happen after every Rowhammer and the
page tables must be checked periodically.

With the templating method, it is possible to control where in a PTE a bit flip will
likely happen. As a result, the chance of corrupting PTE is small and precautions to
detect corrupted PTEs are not strictly required. This changes with blind hammering.
Because the bit flips are not predictable, it is very likely that bits in PTEs flip that
corrupt them and would force the kernel to kill the attacker process upon an access. We
present different methods to detect corrupted PTEs in Section 5.5.

5.4.3 Half-Double Rowhammer

Our exploit uses the half-double pattern that was recently discovered by Qazi et al. [71]
and is able to induce bit flips in TRR memory. It uses a set of four aggressors, two
near aggressors directly adjacent to the victim row and two far aggressors in the next
two rows. The Rowhammer code only accesses the far aggressors, this triggers TRR to
access the near aggressors which in turn leads to bit flips in the victim [71]. For this to
work, the contents of the near aggressors and the far aggressors must be equal.
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System NHammers UC0→1 UC1→0 Flush0→1 Flush1→0

Chromebook1 23 274 27 40 2 5
Chromebook2 23 586 235 2379 12 101

Table 5.3: Performance of the half-double pattern with uncacheable mem-
ory and the flush instruction on the Chromebooks.
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Figure 5.4: Bit flips vs additional dilution on Chromebook1. A higher
dilution means less accesses to the near aggressors (Equation5.5). If the
dilution is too low, TRR starts to refresh the victim row, which leads to less
flips. Above the TRR threshold, the number of flips does not change.

The ARMv8 instruction set contains unprivileged cache maintenance instructions. We
are using dc civac in our exploit to flush the cache lines of the far aggressors. During
development, we also used uncacheable memory due to the higher frequency of bit flips.
Table 5.3 shows the number of bit flips on our two Chromebooks after hammering for
eight hours. The additional delay added by the cache flush instruction can explain the
lower number of bit flips when compared to uncacheable memory. With uncacheable
memory, the hammer loop does approximately 1.6 as many accesses per refresh interval
as the hammer loop with the flush instruction.

The significant discrepancy between the numbers of the two devices makes it hard to
evaluate the broader impact of Rowhammer on Kukui Chromebooks. To make any
predictions about the Rowhammer vulnerability, a bigger data set would be required.

The odd numbers of flips come from three flips happening at the same time. We mostly
saw two flips, but never a single flip per row, due to the error correction in the Kukui’s
memory.

RoundRobin(A, A + 4)dilution, A + 1, A + 3 (5.5)

Contrary to our expectations, adding additional accesses to the near aggressors apart
from the ones done by TRR did not increase the number of bit flips. The number stays
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constant and when the dilution becomes too small, TRR starts to refresh our victim and
the flips decrease. This is shown in Figure 5.4. The dilution is defined like shown in
Equation 5.5 [71], it reflects additional accesses to the near aggressor, not counting the
ones done by TRR. The rightmost point at a dilution of 106 corresponds to half-double
Rowhammer without any additional accesses to the near aggressors.

5.5 Robust Bit-Flip Verification using Speculative
Execution

On a system without ECC DRAM the predictability of bit flips, their location and
direction is very high [52]. This predictability is useful when selecting a victim row for
page table hammering. It is possible to exclude any bit flips that would corrupt a PTE in
a way that forces the kernel to kill the process referencing this page table. This happens
for example on the MT8183 CPU when the PFN bits 40-47 are set to 1. In this case,
the process does not receive a segmentation fault exception that could be caught and
ignored. Instead, the kernel kills the process with a KILL, which cannot be caught and
always leads to the termination of the process.

We present two possible approaches to detect corrupted PTEs without triggering an
interrupt in our process. The usage of vfork() is faster and more straightforward but
not available on every system and can be deactivated easily. The second approach uses
speculative execution within the CPU to access the address-under-test without leaving
any architectural traces and, therefore, no interrupt.

5.5.1 Architectural Method: vfork()

To check if a PTE is corrupted, the corresponding virtual address must be accessed
somehow without triggering an interrupt in the attack process. One approach to achieve
this is an access from another process that uses the same page tables as the attack
process. A process like this can be created with the vfork() system call.

vfork() creates, similarly to fork(), an exact copy of the calling process with the
only difference that the page tables are not copied. Its primary purpose is to provide a
faster version of fork for child processes that immediately execute another process by
calling an exec function. In that case, copying all page tables of the parent process is
unnecessary. But working with the same page tables imposes some restrictions on what
the child process is allowed to do which do not matter for its intended purpose. The
child must not modify any data except the variable which contains the process id that is
returned by fork(). It furthermore must not call any functions except _exit() or any
of the exec() functions. As our child accesses an address that could potentially cause a
signal, it is important to ensure that a potential signal handler catching this signal does
not change any memory. If that is the case, the behavior of the child does comply with
the POSIX standard.
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1 int check_address(volatile uint64_t *address)

2 {

3 int status;

4 int pid = vfork();

5 if (!pid) {

6 // Child process

7 flush ((void*) address);

8 *address;

9 _exit (0);

10 }

11 // Parent process resumes

12 wait(& status);

13
14 if (WIFSIGNALED(status)) {

15 // Address is not safe

16 return 1;

17 }

18 // Address is safe

19 return 0;

20 }

Listing 5.1: Using vfork() to check if address is safe to access.

Listing 5.1 shows the minimal code necessary to check an address with vfork(). vfork()
returns, like fork(), the PID of the child in the parent and 0 in the child. The child
then flushes the address, which is important because the page table entry is not read if
the address is in the L1 cache. The address is then accessed, triggering an interrupt if
it is ivalid. If valid, the child exits with the status 0. When forking with vfork(), the
parent sleeps until the child exits or executes another binary. The wait(&status) call
is required to get the exit status of the child process, which is checked in the following
if. If the child was killed by the operating system, the function returns 1 otherwise 0.

A single address verification takes 0.057 ms (n = 10 000, σx̄ = 0.005). The access of the
address takes only a small fraction of that. The overhead of the two system calls takes
most of the time. To reduce this overhead, the child process can also check multiple
addresses inside a loop. Doing that takes 0.206 ms (n = 10 000, σx̄ = 0.009) for 4 MB
of memory or 1000 PTEs. In case this range check fails, every address must be checked
individually.

Under its intended use, the behavior of the fork() system calls is indistinguishable from
vfork() for the program calling it. Therefore the POSIX standard allows to implement
vfork() as an alias for fork(), rendering this check non-functioning. In the early days
of Unix operating systems, fork() was copying all page tables on its invocation, which
is why BSD introduced vfork(). Linux, however, is copying the page tables using copy-
on-write, reducing the added overhead drastically. Thus vfork() could be changed to a
an alias of fork() without any consequences as a countermeasure against this check.
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1 if (misprediction)

2 access(probe + (* pointer1 & 1) + ... + (* pointer5 & 1));

3 if (flush_reload(probe) == CACHE_HIT)

4 // Report valid address

Listing 5.2: Using speculative execution to check if addresses are safe to access

5.5.2 Novel Speculative Oracle

Depending on an optional implementation of a system call that can easily be changed
is a big disadvantage. We are therefore using exception suppression by mistraining the
branch predictor similarly to Lipp et al. [59] for bit flip verification. With that technique,
we are able to access potentially corrupted addresses during speculative execution in
which the CPU must not change the architectural state and can, therefore, not raise an
exception. Finally, we use a cache side channel to detect if the access was successful,
which means that the PTE is not corrupted.

Listing 5.2 shows the heart of the code, used to check if five addresses are accessible
safely or not.

The branch predictor learns from previous branch outcomes to decide which path to
execute speculatively in the future when the required branch condition is not available.
We use this behavior to mistrain it by executing the branch 20 times, with the input
to execute our probing code. Then we set our pointers to the values we want to verify
and flush probe and the variables that are part of the branch condition. Now when
reaching the branch, variables must be fetched from the DRAM which takes time, so the
CPU recalls the previous branch outcomes and executes our probing code speculatively.
To access probe, it first has to read from pointer1 to pointer5, which can have two
outcomes:

• All pointers are valid. The CPU successfully calculates the offset of probe and
accesses it. This caches the contents of probe to make future accesses faster.

• One or more pointers are invalid. The MMU raises an exception upon access
because it can not translate the virtual address. The CPU cannot calculate the
offset of probe and therefore not access it.

After speculatively executing our verification code, we check if probe is cached or not
and therefore, if the pointers are valid or not. We do this by measuring the time it takes
to read probe with clock_gettime(CLOCK_MONOTONIC, &tp);. For this measurement,
an exact timing source is required, clock_gettime is implemented as a virtual system
call and has therefore a small enough overhead to give reliable timing.

Our speculative execution is different from the one from a normal Spectre attack in that
we only need to know if an address is cached and not which one of an array of addresses
is cached. Therefore, we can optimize our probing code by limiting the values read from

61



100 101 102 103 104

100

101

102

Number of verified addresses

T
im

e
p

er
ad

d
re

ss
in
µ
s

Figure 5.5: The time it takes to verify one address when checking multiple
addresses in the child with vfork(). The overhead of the vfork() system
call becomes negligible when checking roughly 1000 addresses.

the pointers to 1 or 0 with the & 1. This keeps the offset always smaller than 64 and we
only have to check one cache line.

If the access time to probe is below the threshold for a cached access, the tested addresses
are valid with almost 100% certainty. One thing we have to ensure is that we prevent
prefetching of probe by putting probe at the beginning of a page. So if probe is cached
it was accessed during the speculative execution, which means that all accesses to the
pointers were successful. This translates to a false positive rate (detecting an unsafe
address as safe) of practically 0.

Failing to mistrain the branch predictor, a too-quick correction of the branch outcome or
delays in the flush+reload measurement can lead to probe being classified as uncached,
even if all pointers are valid. To reduce this false-negative rate, we repeat the measure-
ment multiple times for all pointers. If probe is cached, all pointers are valid and the
verification can be concluded early.

1 GB · 512

4 kB
· 0.008 ms

5 pointers
≈ 215 s = 3 min 35 s (5.6)

We tested our oracle by passing it five valid pointers or one corrupted and four valid
pointers. The success rate of a correct classification was already 99.01 % after only
one run of the oracle. The average runtime to test 5 pointers is 0.008 ms (n = 10000,
σx̄ = 0.002) for both cases. We are always checking five addresses at once to improve
performance. In the case that the verification fails, we check every address individually.
Checking 1 GB of page tables takes approximately 3 min 35 s as shown in Equation 5.6.
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Step Method Duration Comment

1
Huge Pages < 1s deactivatable

Contiguous Mem. Detection 24.7 s per 1 GB

2 Spray Children 12.6 s per 1 GB

3 Blind Hammering 1 h highly fluctuating

4
Speculative Oracle 3 min 35 s per 1 GB

vfork() 27 s deactivatable

5 Dump Memory 8.5 s per 1 GB

Table 5.4: Average duration of the exploit steps on the Chromebook2.
The duration of all steps except the hammering is steady between runs and
devices. Only step 3 can range from minutes to hours.

5.5.3 Robust Bit-Flip Verification Evaluation

The performance results of the two methods show that the speculative oracle is faster
than our vfork() approach when checking a small number of addresses. The reason for
that is that the overhead of the vfork() system call is a lot higher than the measurement
itself. The impact of this overhead is reduced when multiple addresses are checked within
one run of the child. When checking 1000 addresses the vfork() oracle is a lot faster
than the speculative oracle (0.2 ms vs 1.6 ms). Checking many addresses at once is a
viable approach because corrupted PTEs are rare and only in these cases a recheck of
every individual address is required.

The disadvantage of the vfork() oracle is that it can be easily deactivated in the kernel
by making vfork() an alias of the fork() system call without a big performance penalty.
However, it is possible to check if vfork() is implemented as intended by changing a
variable in the parent from the child and checking for the change in the parent. If the
change is visible in the parent, the vfork() does work and if not, the speculative oracle
is used.

5.6 Exploit Evaluation

Our exploit is able to attack and compromise Chrome OS, from an unprivileged Android
app using Rowhammer. To achieve that, we use the novel hammer pattern half-double
Rowhammer to defeat TRR protected memory. The exploit does not require huge pages,
which can be deactivated easily and hammers without templating to be independent
of ECC correction. Finally, its immunity to corrupted data due to our novel bit-flip
verification, makes it very reliable. Table 5.4 summarizes the duration of the attack
steps.

The run time can be split into the different steps of the exploit. Searching 1 GB of
memory for contiguous blocks takes less than 30 seconds and finds on average 173 MB
(n = 20, σx̄ = 29) on a freshly booted system. The found contiguous memory becomes
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less when the system is running for longer. When huge pages are available, this step
takes less than a second. Spraying the memory with page tables takes less than a minute
when multiple spray children are used.

The hammering has the biggest impact on the run time because it is highly dependent
on the Rohammer vulnerability of the DRAM and luck to find a bit-flip quickly. Due to
the fact that we are not able to reconstruct physical address bit 18, our row unscram-
bling is only correct for 50 % of the found contiguous memory areas. This doubles the
theoretical minimum hammer time. The big discrepancy in the bit flip frequency on our
two tested Chromebooks makes a prediction on the broader vulnerability of these devices
impossible. The hammering is additionally prolonged because not every victim row is
filled with a page table after spraying. Because of these factors, the hammering phase
can take a few minutes to many hours in the worst case for the attacker, on average it
takes approximately 1 h.

When employing the non-templating technique, all shared memory mappings must be
checked regularly to not miss successful flips in page table entries. This takes less than
30 seconds when using vfork(). With the speculative oracle, it takes approximately
3.5 minutes to check 1 GB of page tables.

5.6.1 Dumping Memory

Our goal was to develop a simple proof of concept exploit to show that Rowhammer
exploits are still possible on a modern, fully patched secure operating system with TRR
and ECC DRAM using the half-double hammer pattern. After gaining the physical
memory read and write primitive, the final phase of the exploit is kept easy and only
serves as a simple demonstration of the access capabilities. The memory of a running
system contains many interesting secrets, be it decryption keys of encrypted drives,
private keys of asymmetric cryptography systems, or text entries by the user like a
password or credit card information. Our exploit dumps the physical memory’s entire
content into a file that is saved and could be uploaded to a remote server for later
analysis.

To read as fast as possible, we set all 512 page table entries of our address page tables
to individual page frame numbers. This allows us to read 2 MB of memory at once.
Before that, we must however, flush the TLB to force the MMU to read the translations
from the memory. To do this, we read a chunk of our mappings used during page table
spraying. The biggest performance bottleneck in this phase is the write-speed of the
drive we are dumping the data on. It takes our exploit an average of 33.8 s (n = 5, σx̄ =
0.6) to dump the whole memory, which translates to a write-speed of approximately
121 MB s−1 which we confirmed with dd.
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5.6.2 Real-World Threat

Compared to the hammering, all other phases of the exploit run quickly. Therefore, the
overall attack time does not change significantly if the attack process is stopped during
hammering and has to start from the beginning repeatedly. This makes the attack more
dangerous because it is enough to run the malicious app only for an hour per day which
is, for example, realistic for a puzzle game.

We conclude that the app is a real-world threat to the security of Chrome OS users that
run Android apps on their devices.

Our app does not require any Chrome OS specific functionality and is running in an
Android app on ARM. The chance of this exploit also working on Android phones is
therefore high. We did, however, not investigate this further due to time constraints.

5.6.3 Existing and Potential Countermeasures

Existing detection based countermeasures can be circumvented by our exploit or are
ineffective. The Android NDK allows writable and executable pages. This enables the
encryption of the hammer code to evade the detection through static code analysis. Soft-
ware that tries to detect Rowhammer attacks through run time traces like ANVIL [20]
have the same effect as TRR when protecting the victim page. This does not prevent
half-double Rowhammer but actually enable it. Neutralization countermeasures like
ZebRAM [54] do also not consider half-double Rowhammer and are therefore not effec-
tive. Elimination based countermeasures like disabled huge pages, ECC, TRR and row
scrambling are evaded by our exploit.

Our attack exploits the design of the ARC++ that is only running inside a Linux con-
tainer and therefore not properly separated from the host kernel. Running the Android
runtime in a virtual machine would add another separation layer between Android apps
and the host. This would still allow the current exploit to gain access to the memory of
the virtual machine and it could in the worst-case, compromise other apps. However, an
attack on the Chrome OS host would require an exploit to escape the virtual machine,
which adds a lot of difficulties.

Google’s steps to harden Chrome OS as strongly as possible also protect against worse
impacts of our exploit. The fully verified boot path and integrity checked root partition
prevent the exploit from keeping elevated permissions across device reboots or even
exploit restarts without additional software vulnerabilities, which are not the scope of
this work.

Walker et al. [82] proposed changes to the physical layout of the DRAM cells that could
eliminate the Rowhammer problem altogether. The two effects causing Rowhammer
are electrons wandering through the active region to other cells and capacitive crosstalk
between word lines (cf. Section 2.4.1). A MOSFET transistor with a vertical channel
where the active region is not shared with other transistors would prevent the wandering
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of electrons. To block capacitive crosstalk metal shielding can be used between the word
lines like in almost all cables for high transmission speeds like USB or Ethernet.

Another option is a more advanced memory error correction scheme that would be able
to detect and potentially correct any amount of memory errors. This would not only
protect against Rowhammer induced bit flips but also against bit flips from other sources
like cosmic rays. This would very likely also require a hardware change that is however
smaller, than the complete redesign of DRAM cells, when done right.
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Chapter 6

Conclusion

In this thesis, we examined if Rowhammer exploits are still possible by developing a
novel exploit to attack Chrome OS using the half-double pattern. By studying previ-
ously shown exploits and defenses and Chrome OS’s security architecture and possible
attack surfaces, we identified different challenges and developed reliable and future-proof
solutions for our exploit.

To run native code on Chrome OS, we used the ability of Chrome OS to run Android
apps with ARC++. Because ARC++ runs only in a container, we can use the Android
NDK to run the same Rowhammer exploit technique as Seaborn et al. [75]. With a novel
way to automatically detect contiguous memory blocks that can be used simultaneously
to unscramble DRAM rows, we made our exploit independent of huge pages,. Removing
the templating step made our exploit more effective on ECC memory which is used
in an increasing number of devices. We introduce the idea of spray children to allow
the spraying of page tables on devices with reduced virtual address space and double
the spraying speed. Our final contribution, robust bit-flip verification using speculative
execution makes the exploit more reliable. Since all these techniques do not rely on
Chrome OS specifics, there is a high chance that this attack works on Android phones
as well.

Therefore, the exploit is a real threat to Chrome OS users that occasionally run An-
droid apps on their Chromebooks and potentially also Android users. We conclude
that Rowhammer exploits are still possible and practical and, therefore, remain a se-
curity issue for computer systems worldwide. Furthermore, current countermeasures to
the problem, like TRR, are not sufficiently protecting the DRAM from Rowhammer,
and manufacturers must continue searching for reliable solutions. It becomes, however,
increasingly difficult to develop novel exploits that evade all countermeasures when com-
pared to the first kernel privilege escalation by Seaborn et al. [75]. This gives hope that
Rowhammer will be mitigated in the near future.
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