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Abstract
Modern CPUs dynamically scale voltage and frequency for
efficiency. However, too low voltages can result in security-
critical errors. Hence, vendors use a generous safety margin
to avoid errors at the cost of higher energy overheads.

In this work, we present SUIT, a novel hardware-software
co-design to reduce the safety margin substantially without
compromising reliability or security. We observe that not
all instructions are equally affected by undervolting faults
and that most faultable instructions are infrequent in prac-
tice. Hence, SUIT addresses infrequent faultable instructions
via two separate DVFS curves, a conservative and an effi-
cient one. For frequent faultable instructions, SUIT statically
relaxes the critical path in hardware. Consequently, the in-
struction is not faultable anymore on the efficient DVFS
curve at the cost of performance overheads for this spe-
cific instruction. For infrequent faultable instructions, SUIT
introduces a trap mechanism preventing execution on the
efficient curve. With this trap mechanism, SUIT temporarily
switches to the conservative DVFS curve and switches back
if no faultable instruction was executed within a certain time
frame. We evaluate all building blocks of SUIT, using both
measurements on real hardware and simulations, showing a
performance overhead of 3.79 %, and a CPU efficiency gain
of 20.8 % on average on SPEC CPU2017.
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1 Introduction
With increasing energy consumption of information technol-
ogy [29], energy efficiency has become a crucial design goal
for modern computers. However, manufacturers use gener-
ous voltage guardbands in their CPUs causing a higher en-
ergy consumption than necessary. To counteract this, CPUs
optimize their efficiency with Dynamic Voltage and Fre-
quency Scaling (DVFS) [23, 27, 59]. DVFS allows the CPU
to switch between power states with different power con-
sumption and performance. While vendors define different
voltage-frequency pairs for each power state, finding an op-
timal DVFS curve is non-trivial. A voltage slightly too low
already makes the CPU unreliable, as a small set of instruc-
tions will produce faulty results [8, 31, 47, 56, 60]. At this
point the system is vulnerable and unfit for use in produc-
tion. The susceptibility to faults depends on various factors
during manufacturing and operation of a chip [42, 50].

Still, reducing these voltage guardbands, i.e., undervolting
a CPU, is a highly researched topic because it can greatly
reduce the power consumption of CPUs [6, 7, 16, 30, 35, 36,
43, 51, 52]. While this is most relevant in mobile contexts
where energy availability is limited, desktop computers and
servers also benefit from lower costs for cooling and en-
ergy. Although it may seem counter-intuitive, undervolting
not only increases the efficiency but it can also increase
the performance of CPUs. Modern CPUs are dynamically
throttled to stay within the specified thermal and power lim-
its [17, 54, 63]. With lower energy consumption, the CPU
can sustain higher clock frequencies longer while staying
below these limits, increasing performance.
However, reducing these guardbands also introduces se-

vere security issues as shown by prior work [8, 31, 47, 56, 60].
These software-based fault attacks undermine all security
guarantees of a CPU, even breaking trusted execution envi-
ronments, which motivates the basic questions of our work:

Can system-level mechanisms guarantee security and relia-
bility against undervolting-induced faults? How much energy
do such mechanisms cost? Can these mechanisms be light-
weight enough to enable substantial energy savings?

In this work, we present SUIT, a novel hardware-software
co-design enabling a substantial increase in CPU efficiency
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without compromising reliability or security. SUIT is the
first work on efficiency improvement by undervolting that
builds on the observation that not all instructions are equally
susceptible to undervolting faults [32, 47]. In contrast to prior
work [6, 7, 16, 30, 35, 36, 43, 51, 52], not explicitly protecting
the aging and temperature guardband when undervolting,
SUIT keeps these essential voltage guardbands by using this
difference in the voltages required by different instructions.

Besides the single DVFS curve current CPUs already have,
SUIT adds a second, more efficient DVFS curve that the ven-
dor determines by excluding a set of instructions faulting
first when the voltage is lowered. These instructions are
then disabled while SUIT uses the efficient DVFS curve. We
introduce a trap mechanism to handle the execution of dis-
abled instructions, similar to existing traps, e.g., for invalid
opcodes. When the instruction stream runs into a disabled
instruction, SUIT transfers control to the operating system
that can either emulate the instruction in software or tem-
porarily switch to the conservative DVFS curve where the
instruction can be executed with a sufficiently high volt-
age. SUIT uses a deadline mechanism to determine when
to switch back to the efficient DVFS curve: If no disabled
instruction is executed until the deadline is reached, SUIT
switches back to the efficient DVFS curve. The second DVFS
curve, disabling of specific instructions, trap mechanism and
deadline mechanism require hardware changes of the CPU.

Our analysis, based on execution traces of applications on
x86 systems, shows that faultable instructions typically oc-
cur infrequently. On average over all SPEC CPU2017 bench-
marks, one such faultable instruction is encountered every 5
billion instructions. SUIT uses dynamic DVFS curve switch-
ing or emulation for these kinds of instructions. Other fault-
able instructions, such as the integer multiply instruction
(IMUL) occurring as frequently as every 560 instructions, are
the exception. SUIT relaxes their critical path in hardware
to lower their voltage requirement. Thus, SUIT can handle
any frequency of faultable instructions.

The first building block of SUIT addresses the infrequently
faultable instructions. If a disabled instruction is executed,
SUIT can either dynamically switch DVFS curves or emulate
the instruction. Which method is more efficient depends on
the delays of DVFS curve adjustments, the number of inde-
pendent DVFS domains and the distribution and frequency of
disabled instructions in theworkload. Due to SUIT’s software
component, it can dynamically switch between DVFS curve
adjustments and emulation. We also evaluate the impact
of SIMD instructions on performance and efficiency. With
SUIT, compiling applications without SIMD instructions can
increase efficiency in about half of the tested workloads.
The second central building block of SUIT addresses fre-

quent faultable instructions. As frequent exceptions would
hurt system performance and efficiency, we instead relax
their critical path in the hardware design. This results in
a small performance overhead but has the benefit that the

instruction is stable at lower voltages. We evaluate different
faultable instructions and find our second technique to be
only relevant for the x86 integer multiplication instructions
IMUL and MUL, for short IMUL. The performance overhead of
a SUIT-adjusted, one clock cycle longer, x86 IMUL instruction
in the SPEC CPU2017 benchmarks is only 0.03 % on average
with amaximum of 1.60 % for the 525.x264 benchmark.While
the concept of prolonging the critical path is investigated for
IMUL in this work, the principle can be applied to another
opcode if it were to be a frequent faultable instruction on a
given architecture. This provides a path forward for SUIT,
even though we did not observe any such case beyond IMUL.

We evaluate SUIT with measurements on different CPUs
from AMD and Intel. The short delay to change the core
frequency, the per-core voltage domains and the positive per-
formance impact of undervolting make Intel Xeon CPUs pre-
ferred for SUIT. SUIT uses an optimized strategy to change
frequency and voltage to increase the efficiency as much as
possible while causing only a negligible performance degra-
dation in some cases. With this strategy, SUIT increases the
energy efficiency by over 12 % on average over all SPEC
CPU2017 benchmarks on Intel CPUs. When compiling pro-
grams without faultable SIMD instructions they can always
run on the efficient DVFS curve but have the overhead of
not using SIMD. With this, SUIT increases the efficiency by
19 % but requires the recompilation of applications. In our
security analysis, we show that SUIT prevents the execu-
tion of instructions in the faultable set on the efficient DVFS
curve. Based on this design, we use a reductionist argument
to show that SUIT’s security is equivalent to that of sys-
tems today. Hence, SUIT is a viable approach for substantial
energy savings in a secure manner.
Contributions. Our contributions are as follows:
• We present SUIT, a novel software-hardware co-design en-
abling substantial energy savings through tailored DVFS
adjustments while maintaining security.

• We analyze the undervolting potential due to faultable
instructions and analyze their frequency in real-world
software, revealing that they are often used in short bursts,
e.g., for encryption, which is ideal for SUIT.

• We measure DVFS adjustment delays on real hardware
showing large differences in CPUs of different vendors.

• By evaluating SUIT, we observe no performance loss and
a reduction in power consumption by 14 %, resulting in
an energy efficiency gain of up to 20 %.

• We show that the security of SUIT is equivalent to the
security of today’s CPUs in a reductionist argument.

Outline. In Section 2, we provide background. In Section 3,
we present the design of SUIT. In Section 4, we detail the
hardware and software changes for SUIT. In Section 5, we
determine parameters for SUIT on real hardware-software
setups. In Section 6, we evaluate SUIT’s performance, effi-
ciency and security. We discuss related work in Section 7,
our results in Section 8 and conclude in Section 9.
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Nominal Minimum Voltage Guardband

CPU Supply Voltage

Figure 1. Typical supply voltage of a CPU. It must be higher than
the nominal minimum voltage to account for all uncertainties of
the CMOS circuit, aging, temperature and its surroundings.

2 Background
We provide background on CMOS circuits, voltage guard-
bands, voltage-related faults and DVFS.

2.1 Power Consumption of CMOS Circuits

The dynamic power consumption of a CMOS circuit, 𝑃𝑑𝑦𝑛 =

𝐶𝐿 ⋅ (𝑉𝐷𝐷)2 ⋅ 𝑓𝐶𝐿𝐾 , depends on the load capacitance𝐶𝐿 , sup-
ply voltage 𝑉𝐷𝐷 and clock frequency 𝑓𝐶𝐿𝐾 [44]. CMOS cir-
cuits mainly consume power when switching [44], as on
every switch a CMOS gate must charge or discharge its 𝐶𝐿 .
The switching energy depends on the supply voltage 𝑉𝐷𝐷
squared [44]. This relation is also the basis for many power
consumption side-channel attacks [33, 39, 41, 57, 63].

Supply voltage𝑉𝐷𝐷 and clock frequency 𝑓𝐶𝐿𝐾 also depend
on each other [17]. In a CMOS circuit many transistors im-
plement combinatorial logic with a propagation delay 𝑡𝑃 ,
depending on 𝑉𝐷𝐷 [16, 49]. The block with the longest 𝑡𝑃 is
the critical path of the circuit and determines the maximum
clock frequency 𝑓𝐶𝐿𝐾𝑚 = 𝑡𝑐𝑟𝑖𝑡(𝑉𝐷𝐷)-1. If the clock frequency
is too high, data arrives late, manifesting in malfunctioning
of the circuit, e.g., erroneous computed values [16, 49].

2.2 Voltage Guardbands

The dependency between voltage and frequency in CMOS
circuits is influenced by many factors. Process variation in-
fluences every single transistor’s performance and voltage
requirement. Over time, voltage requirements increase due
to high temperature, age, and voltage spikes delivered by the
power supply unit [24]. To counter these effects, manufac-
turers use a voltage guardband. The circuit is supplied with
a higher voltage than the nominal minimal voltage to take
these uncertainties into account as shown in Figure 1.
Aging effects like bias temperature instability and hot-

carrier injection cause the threshold voltage and consequently
the propagation delay to increase over time [58]. The degree
of aging must be predicted accurately to design a guard-
band. If it is too low the device can break within its expected
lifetime, if it is too large more power than necessary is used.

The propagation delay of modern sub 20 nm FinFET tran-
sistors degrades by approximately 15 % over a time span of
10 years at >100 ◦C [19, 46, 53, 61, 66, 67]. After ten years,
the CPU must either run with a 13 % lower frequency at the
same supply voltage or with a supply voltage that supports
a 15 % higher frequency at age zero. Based on these num-
bers and real hardware measurements, we evaluate the aging
and temperate guardband in Section 5.6 and 5.7. On current

Conservative Voltage Instr. Var. Aging T. ...

Up to a 150 mV variation in instruction voltage requirement.

Efficient Voltage Guardband

CPU Supply Voltage

Figure 2. SUIT does not eliminate the aging or temperature (T)
guardband. Instead, it utilizes the variation in voltage requirements
of different instructions, especially IMUL and SIMD instructions.

Table 1. Undervolting-induced instruction faults observed by
Kogler et al. [32]. If an instruction faults on a specific CPU core at
a specific frequency and voltage offset it counts as one fault for the
number of faults. The rarely faulting instructions (right) occur on
average at lower voltages than the more frequently faulting ones.

Instruction IM
UL
VO
R*
AE
SE
NC

VX
OR
*
VA
ND
N*

VA
ND
*
VS
QR
TP
D

VP
CL
MU
LQ
DQ

VP
SR
AD

VP
CM
P*

VP
MA
X*

VP
AD
DQ

Number of Faults 79 47 40 40 30 28 24 16 9 5 3 1

CPUs the aging guardband is approximately 12 % and the
temperature guardband 3.5 % of the CPU supply voltage.

2.3 Variation in Voltage Requirements

Modern CPUs are highly complex systems where vendors
have multiple dials to fine-tune for the efficiency or perfor-
mance optimum. In particular, they can increase the number
of cycles allocated to an operation or adjust the clock fre-
quency to account for the propagation delay within a specific
part of the circuit [49]. Instructions with a long propagation
delay 𝑡𝑃 can be split up into pipeline stages, dividing 𝑡𝑃 by
the number of stages and enabling higher clock frequen-
cies [49]. This increases the instruction’s latency but keeps
the throughput unchanged. An example for this is the IMUL
instruction. On Intel and AMD CPUs, IMUL takes 3 clock cy-
cles with a throughput of 1 instruction per clock cycle [15].

Even with very good optimizations some instructions can
still have a significantly longer 𝑡𝑃 than most other combi-
natorial acyclic logic blocks inside the CPU. This was first
discovered by Murdoch et al. [47] for IMUL on Intel CPUs. In
their experiments they measured that IMUL starts to produce
faulty results very infrequently on one of their tested CPUs
at a −100 mV undervolt level. However, apart from IMUL
(they did not test SIMD instructions), the CPU was running
stable down to a −250 mV level, resulting in a variation in
voltage requirements of 150 mV as shown in Figure 2.

Kogler et al. [32] performed a more detailed study on this
phenomenon by building a framework that automatically
tests instructions for their undervolting behavior. They con-
firmed that across several CPUs data errors occur earlier
than control-logic errors, indicating that the critical paths
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Figure 3. The overall SUIT design changes several parts of the sys-
tem (colored boxes). We disable certain instructions while switching
to an efficient DVFS curve and increase the latency of others. Exe-
cuting disabled instructions raises a #DO exception, handled by the
OS through emulation or switching of the DVFS curve.

in modern CPUs are more often on the data paths within in-
structions. The highest variation in instruction voltage they
measured was more than 60 mV. Following IMUL in sensitiv-
ity to voltage levels are VOR and other SIMD instructions, as
well as AESENC, as shown in Table 1.

2.4 Dynamic Voltage and Frequency Scaling (DVFS)

Based on the workload, the supply voltage and clock fre-
quency of modern CPUs is adjusted to trade off performance
and power consumption. For DVFS, the vendor defines p-
states, pairs of clock frequencies and voltages including
a guardband that, in combination, form a DVFS curve. Al-
though the p-state is hardware-controlled, the OS can still
intervene in the frequency voltage pairs on some Intel CPUs
with the undocumented MSR 0x150 [45].

3 Design Overview and Implementation
In this section, we provide an overview of SUIT’s design
(see Figure 3) showing, on a high level, how it enables effi-
ciency gains without affecting the system’s security. With
its generic design, SUIT can be integrated into different CPU
architectures. For our proof-of-concept implementation and
evaluation, we focus on the changes for x86-64.

SUIT provides software interfaces to disable instructions
and to switch between DVFS curves. The OS disables all in-
structions that may fault on the efficient DVFS curve. Hence,
the OS can switch to the efficient DVFS curve without affect-
ing the system’s security with faultable instructions.

3.1 SUIT’s Undervolting Potential

SUIT’s undervolting potential comes from two sources. First,
the variation in the required voltage by different instructions,
i.e., faultable instructions. Deactivating instructions that pro-
duce faulty results undetectably while the CPU continues
running eliminates a security risk exploited by various at-
tacks [8, 31, 47, 56, 60]. Second, due to the elimination of this
vulnerability, a small fraction of the aging guardband can be
used for undervolting limited to a certain amount of time.

𝐸

𝐶𝑉

𝐶𝑓

Clock Frequency

Conservative DVFS Curve
Efficient DVFS Curve

Su
pp

ly
Vo

lta
ge

Figure 4. Switching from a p-state on the efficient DVFS curve to
the conservative DVFS curve can be done in two ways: by changing
the voltage (𝐶𝑉 ) or the frequency (𝐶𝑓 ).

The studies of Murdoch et al. [47] and Kogler et al. [32]
show large differences in instruction voltage requirements
between CPUs and even CPU cores due to process variation.
The average over all CPUs covered in these two studies that
exhibit this variation in instruction voltage requirements is
70 mV (𝑛 = 6, 𝜎 = 44 mV), the maximum is 150 mV. CPUs
from Intel 6th generation did not exhibit this variation [32].

Data centers and cloud providers, representing a growing
share of the global electric power consumption [34], procure
new CPUs after a few years. For example, AWS recently
increased the life span of their servers from four to five
years [14]. Xeon CPUs are typically supported for less than
10 years [28]. Additionally the aging degradation is larger at
higher temperatures [40, 65]. During the limited life span and
with well controlled core temperatures the full aging guard-
band designed for the worst case is not required. Also typical
consumer devices are not running continuously although
the guardband is designed for nonstop use. Exploiting some
fraction of the aging guardband with SUIT in the first few
years can have a large impact on data center and consumer
device power consumption without impact on reliability.

In Section 6, we evaluate a conservative undervolting mar-
gin of −70 mV highlighting the differences in instruction
voltage requirements andwith an additional 20 % of the on av-
erage 137 mV aging guardband for a combined−97 mV offset.
Thus, in contrast to previouswork [7, 16, 30, 35, 36, 43, 51, 52],
SUIT uses either none or only a small fraction of the aging
voltage guardband for undervolting.

3.2 Two DVFS Curves

A CPU with SUIT has a conservative and an efficient DVFS
curve. The conservative curve is the same as on current
CPUs. The efficient curve is determined by excluding the
small number of instructions that fault in the “instruction
voltage variation” range of the voltage supply (see Figure 2).

We introduce a newMSR that allows the operating system
to select which DVFS curve to use. The CPU ensures that the
efficient curve can only be used if the faultable instructions
are disabled. Switching from the efficient to the conservative
DVFS curve can be done in two ways, as seen in Figure 4. Sec-
tion 4.3 details the different effects of the switching method
on the efficiency and performance of SUIT.
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3.3 Disabling Instructions

We propose a new model-specific register (MSR) that allows
the operating system to disable all faultable instructions de-
fined by the manufacturer per voltage or frequency domain.
We use a reserved interrupt vector number [26] for a new
Disabled Opcode (#DO) CPU exception. When the CPU en-
counters a disabled instruction it raises a #DO exception. Like
other CPU exceptions, #DO preserves the current register
set so that the program can continue after the exception is
handled. The OS handles this new exception by following
the approaches presented in Section 4.

3.4 Instruction Emulation

Additionally to switching the DVFS curve to execute fault-
able instructions, a system with SUIT can also emulate in-
structions. SUIT emulates instructions like VOR or VPCMP
with non-vectorized alternatives, and AESENC with a side-
channel-resilient bit-sliced AES implementation. To perform
this emulation, the operating system maps emulation code
into the memory of the user space program. The exception
handler returns to this emulation code, which is then run
in user space. After the emulation, the program returns to
the kernel through, e.g., a system call, where the original
register contents are restored and the program continues
execution after the disabled instruction. The two transitions
into the kernel and back dominate the overhead.

3.5 Security

SUIT’s security is established exactly as for current CPUs,
namely by the vendor determining safe DVFS curves. Today,
when an instruction produces erroneous results during this
process, the vendor either accepts this faultable instruction
as a critical path for the CPU, or increases the instruction
latency to reach a slightly more efficient DVFS curve. SUIT
provides a third option. Instead of increasing the latency,
with SUIT, vendors determine a second DVFS curve, which
excludes the small number of faultable instructions, thereby
resulting in a considerably more efficient DVFS curve. As
this follows the same process as before, just with fewer in-
structions, we obtain the exact same security level for this
slightly reduced instruction set. The details of the security
evaluation are given in Section 6.9.

4 SUIT Hardware-Software Interaction
SUIT uses two building blocks for low-frequency and high-
frequency faultable instructions, which are generically appli-
cable to any CPU and microarchitecture. While both intro-
duce overheads, we show in Section 6.3 that, overall, SUIT
not only compensates these overheads but yields a signifi-
cant increase in system efficiency.We assume that the vendor
has determined the two DVFS curves with and without the
faultable instructions during manufacturing, one of which
being the DVFS curve the vendor determines already today.

4.25⋅108 4.26⋅108

⋅108

101103105107

Instruction Index
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p
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e

Eff
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AES Instructions
DVFS Curve Co

ns
.

Figure 5. Detailed view of an AES instruction burst and the resulting
change of the DVFS curve to conservative and back. Horizontal
segments correspond to the timewithout AES instructions executed,
with the height of the segment showing the gap size, the 𝑙𝑜𝑔10 of
the segment’s length. Vertical segments show instruction bursts.

4.1 Low-Frequency Faulting Instructions

SUIT’s central idea is that the CPU generally runs on the ef-
ficient DVFS curve. SUIT handles the corner case of disabled
instructions by triggering an OS handler that temporarily
switches to the conservative and less efficient curve, which
is secure for all instructions as shown in Figure 5. When con-
tinuing on the conservative DVFS curve after the switch, the
CPU re-executes the instruction that was formerly disabled.
Our analysis shows that programs often use faultable in-

structions in short bursts. Based on this observation, SUIT
uses a deadline mechanism to determine when to switch back
to the efficient DVFS curve. Initialized with the deadline it
counts down with constant speed. At zero, an interrupt is
triggered to switch back to the efficient DVFS curve. When-
ever the CPU executes an instruction that would be disabled
on the efficient DVFS curve, the timer is reset and starts
counting down again. Therefore, SUIT automatically adjusts
to many frequencies of faultable instructions and avoids
thrashing-like effects in many cases, where SUIT would fre-
quently switch between the DVFS curves.
Instruction Emulation. For single instructions, emulation
is faster than switching DVFS curves (see Section 6.6). For
65 % of our tested applications emulation is beneficial.
Overhead. The dynamic building block of SUIT incurs over-
heads from two sources. The first is due to the #DO exception
and corresponding OS handler. We measured this delay to
be 0.34 µs in Section 5.2. The second overhead is due to the
DVFS curve switching delay or instruction emulation. SUIT
only has to delay execution when switching from the ef-
ficient to the conservative curve; in the other direction, it
disables the instructions and does not need to wait until the
efficient curve is reached. We measured this delay on current
Intel and AMD CPUs in Section 5.2. On an Intel Xeon Silver
4208, it takes on average 31 µs to change the core frequency
and 335 µs to change the core voltage. On an AMD Ryzen 7
7700X it takes on average 668 µs to change the frequency.

4.2 High-Frequency Faulting Instructions

The latency of an instruction is a direct result of the propaga-
tion delay of the instruction’s critical path. If the critical path
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of an instruction is larger than the inverse of the required
clock frequency, the instruction’s critical path has to be split
up into multiple stages, forming a pipeline for the instruc-
tion. The number of stages corresponds to the latency of the
instruction. By increasing the number of pipeline stages and,
therefore latency, the shorter critical path of the individual
stages allow for lower voltages or higher frequencies [49].
The IMUL instruction family, which multiplies two inte-

gers, is quite commonly used and considerably more complex
than most other ALU instructions. It is typically split up into
3 stages on various modern CPUs [2, 3, 15]. These 3 clock
cycles are still very tight, limiting the vendor in further opti-
mizing the DVFS curve due to the critical path within the
IMUL instruction. Kogler et al. [32] practically confirmed this
by undervolting and finding that the IMUL instruction faulted
first in 91.2 % of cases. Our analysis of the instruction usage
of applications in Section 5.1 shows that IMUL is the only
instruction used so frequently that SUIT would permanently
run on the conservative DVFS curve, preventing any poten-
tial efficiency gain. Therefore, SUIT has a second building
block for frequent instructions, e.g., IMUL.
The central idea is to address this problem by statically

removing frequent instructions from the set of faultable in-
structions at the cost of performance.We analyze the sensitiv-
ity of performance to latency increases of IMUL by adjusting
its implementation in a microarchitecture simulator. It is
important to note that IMUL is fully pipelined. While the
latency is 3 cycles, already after the first cycle, another input
can be pushed into the IMUL pipeline. Hence, changing the
latency has no effect on the throughput. Overall, increasing
the latency of IMUL by 1 clock cycle causes a performance
overhead of 0.03 % (𝑛 = 16, 𝜎𝑥 = 0.15) on average and 1.60 %
(𝑛 = 9, 𝜎𝑥 = 0.55) in the worst case (see Section 6.1).
Static Latency Increase is not Suitable for All Instruc-
tions. While it seems tempting to just increase the latency
of all faultable instructions, this decreases performances and
removes the flexibility of SUIT. As our evaluation shows,
SUIT increases the efficiency on average and for many work-
loads significantly. Additionally, it does not decrease the
performance of highly specialized workloads that use many
faultable instructions (e.g., 520.omnetpp, Section 6.3). For
these specialized workloads, SUIT will stay on the conserva-
tive DVFS curve, as faultable instructions occur frequently.
Consequently, for specialized workloads, SUIT maintains a
high performance while increasing the efficiency for others.

4.3 Operating Strategy

The operating strategy describes how the operating system
controls the SUIT hardware. There are four main ways based
on the two DVFS curve switching methods, see Figure 4.
Emulation. The DVFS curve is not switched but the in-
struction is emulated in the #DO exception handler. There-
fore, every disabled instruction incurs the overhead of the
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Figure 6. Detailed view of a long burst of faultable instructions and
how frequency and voltage change with the 𝑓𝑉 operating strategy.

exception and the emulation. Emulation is not possible for
applications running in trusted execution environments.
Frequency 𝐸 ↔ 𝐶𝑓 . Switching the DVFS curve by changing
the frequency enables fast switching and is highly efficient
because the CPU always stays at the lower voltage. However,
the performance is lowered when running on 𝐶𝑓 .
Voltage 𝐸 ↔ 𝐶𝑉 . The DVFS curve switch by voltage is
approximately a magnitude slower than by frequency, result-
ing in a high performance impact. Nonetheless, performance
is high when running on the conservative DVFS curve.
Combination (𝑓𝑉 ) 𝐸 ↔ 𝐶𝑓 → 𝐶𝑉 → 𝐸. Changing the fre-
quency and voltage can lead to an optimal balance between
efficiency and performance. On a #DO exception, a quick
switch to the conservative curve is realized by changing the
frequency. At the same time, a voltage increase is requested.
The program continues running at 𝐶𝑓 . If the burst of poten-
tially faulting instructions is short, the operating strategy
returns to 𝐸 and cancels to voltage change. If the burst is
long enough for the voltage to change, the CPU runs at 𝐶𝑉
with full performance. This incurs another frequency change
stall delay. The whole sequence is depicted in Figure 6.
Trashing Prevention. If the gap between disabled instruc-
tions is bit longer than the deadline, the CPU constantly
switches DVFS curves adding considerable overhead. The
OS detects this by counting the number of #DO exceptions
during a specified time span and increases the deadline. This
ensures that the CPU stays in the conservative DVFS curve.
Parameters. The 𝑓𝑉 operating strategy and trashing pre-
vention are optimized with four parameters: (1) The deadline
(p_dl) denoting the maximum time between two potentially
faulting instruction before switching back to the efficient
curve; (2) the time span (p_ts) over which trashing preven-
tion looks back and counts #DO exceptions; (3) the maximum
#DO exceptions count (p_ec) in p_ts; and, if trashing is de-
tected, (4) the deadline factor (p_df) by which the deadline
is multiplied for this stable period.
A pseudo code implementing the 𝑓𝑉 operating strategy

and trashing prevention for the evaluation simulation that
use the parameters is shown in Listing 1.
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Figure 7. Timeline of AES instruction executionwhile VLC is stream-
ing a 1080p video to visualize how these instructions are often
executed in bursts. The timeline is truncated to the first 0.5 %. For
the evaluation we take all faultable instructions into account.

5 Evaluation of Building Blocks on Real
Hardware and Software

For each building block of SUIT, we perform measurements
of real software and hardware to obtain realistic data for the
evaluation. In Section 5.1, we analyze applications for their
usage of faultable instructions. In Section 5.2, we measure
the delays incurred by exceptions and changing the core
voltage and frequency. To determine the effects of SUIT on
efficiency, we measure how CPUs behave when running
them undervolted in Section 5.4. In Section 5.5, we measure
the DVFS curve of a contemporary CPU for our security
evaluation. In Section 5.6, we measure the aging guardband
and in Section 5.7 the temperature guardband. In Section 5.8,
we measure the impact of disabling SIMD instructions on
SPEC CPU2017. Subsequently, in Section 6, we use these
results to evaluate the entire SUIT system.

5.1 Frequency of Disabled Instructions in Real Code

We analyze 25 applications for their usage of faultable in-
structions. The data collection was done using QEMU [9].
QEMU Plugin. We implement a QEMU plugin allowing us
to log in detail when specific instructions are executed. We
use Linux’s isolcpus parameter to isolate one core for our
application in QEMU, and use canary instructions to make
sure QEMU doesn’t record instructions executed outside of
the workload being tested. The plugin records the trace based
on instruction count. Due to modern CPUs being superscalar
and instructions taking a variable number of clock cycles,
we use the INSTRUCTIONS_RETIRED performance counter to
estimate the number of instructions executed per clock cycle.
We use it to convert between instruction count and CPU
clock cycles in the evaluation simulation to obtain correct
timings, e.g., for the deadline mechanism.
Instruction patterns. Using QEMU, we collect the data
on AES and SIMD instructions from Table 1 of a client net-
work application (nginx and VLC streaming), as well as all
benchmarks in the SPEC CPU2017 benchmark suite.
The timeline shown in Figure 7 allows us to understand

the distribution of AES instructions during the execution
of VLC. More specifically, we can observe that AES instruc-
tions occur in bursts with gaps between them. We observed
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Figure 8. The core voltage of an Intel Core i9-9900K after resetting
the negative voltage offset to 0 mV at time 0. Faultable instructions
must not be executed until the core voltage is actually increased.
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Figure 9. There is a delay between requesting a frequency change
and the actual change on Intel CPUs (here an i9-9900K). Measure-
ment samples (⊕) are shown relative to time 0 (the dotted line)
where the new frequency was set. The gray area marks the dura-
tion during which the CPU stalls and no samples were measured.

similar patterns with SIMD instructions in SPEC CPU2017
benchmarks, with larger gaps between faultable instructions
accounting for larger parts of the overall execution time.

5.2 Core Voltage and Frequency Change Delays

We microbenchmark the overhead for each building block of
SUIT on real systems for the simulation of SUIT in Section 6.
Voltage Change Delay. Figure 8 shows the delay to change
an Intel Core i9-9900K’s core voltage over 20 repetitions. We
use MSR 0x150 to set voltage offsets and MSR_IA32_PERF_-
STATUS to read the current CPU core voltage. In a kernel
module, we first decrease the voltage with a negative offset
and wait for it to manifest. Afterward, we raise the voltage to
its original level (time 0 in the figure) and measure the time
it takes for the voltage to stabilize by polling MSR_IA32_-
PERF_STATUS. As shown in Figure 8, it takes 350 µs (𝑛 = 20,
𝜎 = 22) on average, with a maximum of 379 µs.
Frequency Change Delay. Figure 9 shows the delay on an
Intel Core i9-9900k to change the clock frequency over 20
repetitions. We measure with a kernel module and the APERF
and MPERF counters to get the current CPU frequency [27].

On the i9-9900K, we write MSR_IA32_PERF_CTL to change
the frequency, which takes on average 22 µs (𝑛 = 20,𝜎 = 0.21)
with a maximum of 24.8 µs. We also confirm that there is
one frequency domain. After setting the frequency, all cores
of the i9-9900K stall illustrated as a gray area in Figure 9,
where no samples were taken. The first sample after the stall
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Figure 10. The delay between requesting a frequency change and
the change of the frequency on an AMD Ryzen 7 7700X with per-
core frequency domains. The CPU core does not stall.
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Figure 11. The delay between requesting a frequency change and
the change of the voltage and frequency on an Intel Xeon Silver
4208 with per-core frequency and voltage domains.

still shows a high frequency, while it is actually already low,
due to the APERF frequency being updated late during the
stall. We verified this by reading the p-state value after the
stall. The behavior is equal when increasing the frequency.

Figure 10 shows 5 frequency changes on the AMD Ryzen
7 7700X using cpufreq_set. The frequency change takes
668 µs (𝑛 = 10, 𝜎 = 292) on average. The core does not stall.
Per-Core Voltage and Frequency Change Delay. Fig-
ure 11 shows 5 p-state changes on an Intel Xeon Silver 4208
when changing the frequency with MSR_IA32_PERF_CTL. In-
tel Xeon CPUs since Haswell-EP have per-core voltage and
frequency domains (PCPS) [21]. But they are coupled and
always move in tandem. When changing the p-state the CPU
core always first changes the voltage and then the frequency,
regardless of the direction of the change. The frequency
change looks similar to the one of the i9-9900K, suggesting
that the same clock source is used. The voltage change takes
on average 335 µs (𝑛 = 98, 𝜎𝑥 = 135) and the following fre-
quency change 31 µs (𝑛 = 98, 𝜎𝑥 = 2.3) during which the
CPU core stalls for 27 µs (𝑛 = 98, 𝜎𝑥 = 2.5).

5.3 Exception and Emulation Call Delay

We measure the end-to-end delay from a CPU exception to
the invocation of the corresponding handler in the Linux
kernel and the return back to user space.
Exception Delay. We use the invalid opcode exception,
which closely resembles our disabled opcode exception. In
user space, we store the current Time Stamp Counter (TSC)
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Figure 12. Performance increase for multiple undervolting offsets
in SPEC CPU2017 on an Intel i9-9900K. With a voltage offset of
−97 mV the SPEC CPU2017 score increases by 3.8 % and the average
power consumption decreases by 16 %. The second and third y-axis
show the power in W and frequency in GHz.

Table 2. Average performance (SPEC CPU2017 score) increase and
power savings for different CPUs.
*AMD CPUs were undervolted using AMD’s Curve Optimizer.

CPU 𝑉𝑜𝑓 𝑓 Score Power Freq. Eff.

i5-1035G1 −70 mV +6.0 % −0.1 % +8.5 % +6.1 %
−97 mV +7.9 % −0.5 % +12 % +8.4 %

i9-9900K −70 mV +2.2 % −7.2 % +2.6 % +10 %
−97 mV +3.8 % −16 % +3.3 % +23 %

7700X* −70 mV +1.4 % −9.8 % +1.8 % +12 %
−97 mV +1.9 % −15 % +1.8 % +20 %

value in a register right before executing UD2 to generate an
invalid opcode. The exception is handled by our modified
Linux kernel, which stores the current TSC value at the
beginning of the exception handler. The difference of the two
TSC values is the delay for entering the exception handler.
This delay is 0.34 µs (𝑛 = 10, 𝜎𝑥 = 0.04) on an Intel i9-9900K
and 0.11 µs (𝑛 = 10, 𝜎𝑥 = 0.02) on an AMD 7700X.
Emulation Call Delay. To emulate instructions in user
space the kernel is entered twice: First on the invalid op-
code exception from where it returns to the emulation code.
Afterward from the emulation code back into the kernel to
continue normal program execution. We measure this delay
similarly to the exception delay with the UD2 instruction.
However, the exception handler returns to another function
in user space that executes a second UD2 from where the
kernel jumps back to after the initial UD2. We read the TSC
counter before and after the first UD2 instruction. This delay
is 0.77 µs (𝑛 = 10, 𝜎𝑥 = 0.14) on average on an Intel i9-9900K
and 0.27 µs (𝑛 = 10, 𝜎𝑥 = 0.02) on an AMD 7700X.

5.4 Efficiency and Performance of Undervolting

The steady state performance ofmost CPUs is limited by their
thermal design power (TDP), which must not be exceeded
for longer periods. Hence, decreasing the CPU core voltage
decreases power consumption, which subsequently allows
frequencies to be increased, resulting in higher performance.
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Figure 13. The stable frequency-voltage pairs on an Intel Core i9-
9900K measured by fixing the frequency and reading the voltage
with MSR 0x198. The modified IMUL plot shows the safe voltages
for IMUL when increasing its latency from 3 to 4 clock cycles.

We measure the CPU package power with Intel’s and
AMD’s Running Average Power Limit (RAPL) [1, 4, 27] in-
terfaces while undervolting the CPU to get realistic values
for the power reduction. The accuracy of RAPL is sufficient
for this purpose [20]. During this measurement we run the
CPUs outside the vendor’s defined power states down to
voltage offset levels close to where the first faults happen.
This is possible due to the aging and temperature guard-
band. Without SUIT, this is not recommended and can have
a severe impact on system security [8, 31, 47, 56, 60]. With
SUIT, undervolting is possible due to the variation in voltage
required by different instructions.
Figure 12 shows the score of the SPEC CPU2017 bench-

marks, power consumption and core frequency with decreas-
ing CPU core voltage offsets on an Intel Core i9-9900K. Ta-
ble 2 shows the results of three CPUs. The efficiency change
is computed by one over the change in benchmark duration
(score) multiplied with the change in power consumption. If
a CPU finishes the benchmark in half the time (score +100 %)
while using half as much energy (power−50 %) the efficiency
increases by (0.5 ⋅ 0.5)−1

= 400 %.
The i5-1035G1 seems to be limited by the TDP, with the

power consumption changing negligible but the frequency
increasing significantly. We undervolted the AMD CPUs
with the curve optimizer [11] in the BIOS as it does not
have a MSR 0x150 like Intel CPUs. The curve optimizer
value translates to an undervolt offset by multiplying it by
3 – 5 mV. We selected values of -18 and -24. Intel does not
allow undervolting the Xeon Silver 4208 CPU at the moment.

5.5 Frequency-Voltage Pairs

For the security analysis in Section 6.9, we measure the
p-states of an Intel Core i9-9900K CPU. Figure 13 shows
the pairs for guaranteed stable operation predefined by the
vendor. The modified IMUL plot shows the safe voltage for
IMUL with a 4 clock cycle latency, see Section 6.9.

5.6 Aging Guardband

The propagation delay of modern sub 20 nm FinFET cir-
cuits degrades by approximately 15 % over a time span of

Table 3. Clock frequency and fan RPM to run the i9-9900K at a spe-
cific temperature and the resulting maximum undervolting offset.

𝑓𝐶𝐿𝐾 Fan RPM 𝑡𝑐𝑜𝑟𝑒 𝑉𝑜𝑓 𝑓

4 GHz 1800 (max) 50 ◦C −90 mV
4 GHz 300 88 ◦C −55 mV

Table 4. The performance impact of disabling SSE and AVX on SPEC
CPU2017. All benchmarks exceeding 5 % impact are shown.

fprate intrate 508 521 538 554 525 548
i9-9900K −4.1 % 0.5 % −22 % −1.4 % −12 % −3.3 % 7.0 % 7.7 %
7700X −5.9 % 2.6 % −35 % −5.3 % −9.0 % −19 % 22 % 6.8 %

10 years [19, 46, 53, 61, 66, 67]. To counter aging without
decreasing the frequency, the voltage guardband at the be-
ginning of the life cycle must support a 15 % higher frequency
than the maximum frequency of the CPU. This ensures that
the voltage is high enough after the propagation delay in-
creased by 15 % after 10 years due to aging.
Using the p-states of our Intel Core i9-9900K from Fig-

ure 13 we can calculate the size of the aging guardband for
this CPU. At 5 GHz the CPU core voltage is 1.174 V. The gra-
dient from 4 GHz to 5 GHz is 183 mV/GHz. This results in an ag-
ing voltage guardband of 5 GHz ⋅ 15 % ⋅ 183 mV/GHz = 137 mV
or 12 %. This is in linewith previouswork [36], where authors
were able to undervolt their new CPUs by approximately
100 mV more than we are able to on our aged CPUs.

5.7 Temperature Guardband

To estimate the size of the temperature guardband we mea-
sure the maximum undervolting offset at different core tem-
peratures on an Intel Core i9-9900K. We influence the core
temperature by adjusting the CPU fan speed. With a low fan
speed the CPU always clocks as highly as possible under
thermal throttling constraints, which must not exceed 90 ◦C.
On average over all SPEC CPU2017 benchmarks, we run at
88 ◦C since a few benchmarks never reach 90 ◦C. Table 3
shows the maximum undervolting offset at 88 ◦C and 50 ◦C.
50 ◦C is twice the room temperature the CPUwas running in,
making it a realistic lower bound temperature for a CPU un-
der full load. The difference in voltage requirement is 35 mV,
which is 3.5 % of the 991 mV core supply voltage at 4 GHz.

5.8 SPEC CPU2017 Without SIMD instructions

A program compiled without SSE and AVX support does not
execute any SIMD instructions. All instruction in Table 1
except IMUL and AESENC are SIMD instructions. If the per-
formance overhead is smaller then the gain of SUIT, these
programs can be executed without ever causing a #DO ex-
ception because IMUL is hardened in CPUs with SUIT. We
measure the influence of SIMD on SPEC CPU2017 and com-
pare these numbers in Section 6.7. Table 4 shows the impact
on the benchmark score for the floating point (FP) and integer
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Table 5. The gem5 system used for instruction latency evaluation.

CPU x86-64, 2 Core, 3 GHz, O3 (Out-Of-Order) CPU
DRAM 2 Channel, 3 GB DDR4_2400_8x8
Cache 64 kB L1I, 32 kB L1D, 2 MB LLC

gem5 Mode Full System
OS Ubuntu 20.04.1 with Linux kernel v5.19.0
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Figure 14. Slowdown in % with increasing latency of IMUL. For
small increases the relationship does not grow linearly, we suspect
that the out-of-order execution hides the additional latency.

suite and for selected benchmarks. The FP score decreases
on both tested CPUs as expected, while the integer score
increases. We suspect AVX throttling being the root cause
for the increase [12, 37].

6 Evaluation
We evaluate the effects of SUIT on efficiency and perfor-
mance on a variety of benchmarks and different CPUs.

6.1 Increased IMUL Latency

We use the gem5 simulator to evaluate the performance
impact of increasing the latency of IMUL by 1 clock cycle to
4 clock cycles. The configuration is shown in Table 5. We ran
the SPEC CPU2017 benchmarks in gem5 with the SPECcast
tool by Prieto et al. [55]. It only runs representative parts with
the out-of-order CPUmodel that takes longer to simulate.We
also implemented the MSR to disable instructions and #DO
exception and modified Linux v5.19 to handle the exception.
As shown in Figure 14, an IMUL latency of 4 clock cycles

causes a 0.03 % (𝑛 = 8, 𝜎𝑥 = 0.15) slowdown on average over
all SPEC CPU2017 benchmarks. Frequent IMUL instructions
slow down 525.x264_r most (by 1.60 % (𝑛 = 9, 𝜎𝑥 = 0.55)).
0.99 % of all instructions executed by 525.x264_r were IMUL
compared to 0.07 % on average over all other benchmarks.

Figure 14 also shows the slowdown for larger IMUL laten-
cies. Small increments have only a low impact on perfor-
mance because they are hidden in the out-of-order execution
of CPUs. Latencies of 4 and 5 clock cycles are more easily
absorbed. With higher latencies, we can see an almost linear
relationship between IMUL latency and slowdown.

6.2 Instruction Trace-Based Evaluation

We use the data from Section 5 to evaluate the efficiency and
performance impact of SUIT for a range of applications.

CPU Model

Instruction Trace
Event Based

CPU Simulator
Operating
Strategy

Figure 15. The components of our instruction trace-based simulator.

1 class Operating_Strategy_fV:
2 def disabled_instruction_exception_handler ():
3 # we wait for the frequency to change
4 cpu.change_pstate_wait(DVFS.Cf)
5 # and request the voltage change
6 cpu.change_pstate_async(DVFS.Cv)
7
8 cpu.set_instructions_disabled(False)
9

10 # trashing prevention
11 if exception_count_in_timespan(p_ts) >= p_ec:
12 cpu.set_timer_interrupt(p_dl * p_df)
13 else:
14 cpu.set_timer_interrupt(p_dl)
15
16 def timer_interrupt_handler ():
17 cpu.set_instructions_disabled(True)
18 cpu.change_pstate_async(DVFS.E)

Listing 1. Implementation of the 𝑓𝑉 operating strategy (Section 4.3)
with trashing protection. On a disabled opcode exception, the
CPU switches to the conservative DVFS curve by changing the
frequency (𝐶𝑓 ), a voltage change (𝐶𝑉 ) is started and all instructions
are enabled. The trashing prevention sets a count-down timer that
will switch the CPU to the efficient DVFS curve after expiration –
unless a faultable instruction was executed prior to timer expiration,
which would have reset the count-down timer to the deadline.

Methodology. Our event-based simulator models a CPU
executing an instruction stream from Section 5.1 and an op-
erating strategy from Section 4.3 as shown in Figure 15. The
operating strategy is defined as a class that communicates
with the simulated CPU as shown in Listing 1. The instruc-
tions in Table 1 are disabled on the efficient DVFS curve. The
simulated CPU behaves as given by the base measurements
from Section 5. The efficient DVFS curve causes changes in
the power consumption and performance at different voltage
offsets as shown in Section 5.4: −70 mV from the variation
in instruction voltage requirements and −97 mV with an
additional 20 % of the aging guardband, see Section 3.1.

Transitioning between these curves slows down the simu-
lation by the delays given in Section 5.2. As the latency of
IMUL is increased in all CPUs, we also factor in its negative
performance impact from Section 6.1 for this evaluation.
To simulate multi-core CPUs with a single frequency do-

main, we record multiple instruction streams. During the
simulation, one instruction stream is pinned on one core. A
DVFS curve change subsequently impacts all cores.
Instruction Emulation. To estimate the overhead of in-
struction emulation, we add the overhead from each SPEC
benchmark compiled without SIMD instructions from Sec-
tion 5.8. Additionally, we add the emulation call delay from
Section 5.3 to any execution of disabled instructions.
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Applications. We record instruction traces of a wide range
of applications. The first set comprises all 23 benchmarks of
SPECCPU2017 [10]. Since they do not contain networkwork-
loads apart from the simulated network by 520.omnetpp, we
also test Nginx [25] (100 kB files over an HTTPS connection
with AES encryptions and decryptions), using the wrk bench-
marking tool [64]. The network is a virtual network between
the QEMU virtual machine running Nginx and its host run-
ning wrk. To benchmark the network client side, we use
VLC [62] streaming a 1080p video from Vimeo over HTTPS.
Video streaming generates more traffic than web browsing.
Simulated CPUs. We evaluate SUIT on three CPU models:
𝒜: Intel Core i9-9900K with a single frequency and voltage
domain and different core counts.

ℬ: AMD Ryzen 7 7700X with per-core frequency domains.
𝒞: Intel Xeon Silver 4208 with per-core frequency and volt-
age domains.

The subscript, e.g., 𝒜1 defines the number of utilized CPU
cores for which the result is relevant. 𝒳∞ denotes methods
where the number of CPU cores are irrelevant on the result.

6.3 Efficiency and Performance Impact

Table 6 shows the results of the instruction trace-based eval-
uation with the CPUs𝒜 to 𝒞. The following sections go into
detail about the CPUs and operating strategies. Figure 16
shows the results for performance and efficiency of all tested
applications on CPU 𝒞 running the 𝑓𝑉 operating strategy.
Different Undervolting Offsets. The measurements in
Table 2 show that the efficiency approximately doubles when
decreasing the voltage offset from −70 mV to −97 mV. This
can be explained with the quadratic voltage dependency in
the dynamic power consumption of a CMOS circuit. The
approximate doubling also translates to a system with SUIT.
Dependency on Domain Count. Besides the DVFS curve
change delay, the performance of SUIT depends on two
factors: whether the CPU has a single or per-core DVFS
domains; and, if there is only a single DVFS domain, the
number of cores. Only the emulation method is core-count
independent. The impact of the core count on the efficiency
and performance in discussed in Section 6.4.

6.4 𝑓𝑉 Operating Strategy

The 𝑓𝑉 strategy changes between three p-states 𝐸, 𝐶𝑓 and
𝐶𝑉 (see Figure 4) to execute every workload as efficiently and
fast as possible. It is used on CPUs with the same number
of frequency and voltage domains: 𝒜 and 𝒞. The following
numbers are from CPU 𝒞, the results for 𝒜1 are analogous.
Figure 16 shows the detailed results for the performance and
efficiency impact of a −70 mV and −97 mV undervolt.

We discuss the results for −97 mV. The average efficiency
gain over all SPECCPU2017 benchmarks is +11 %, themedian
is +13 % while running on the efficient DVFS curve 72.7 %
of the time. Applications that execute faultable instruction
sparingly stay primarily on the efficient curve. 557.xz sees

the highest efficiency gain. 97.1 % of the time it is on the
efficient DVFS curve, resulting in a +2.75 % performance and
+16.9 % efficiency gain (not shown). Applications that exe-
cute faultable instructions frequently are primarily on the
𝐶𝑉 p-state. 520.omnetpp is on the efficient curve 3.2 % of
the time. The performance impact of −0.13 % is negligible
while the power consumption is reduced by −0.60 % result-
ing in a +0.47 % efficiency gain (not shown). Applications
in-between, switch between 𝐸, 𝐶𝑓 and 𝐶𝑉 repeatedly, result-
ing in a small performance loss but a large reduction in power
consumption. 502.gcc experiences the worst impact on the
performance with−2.89 %. The reduction in power consump-
tion by −11.5 % results in an efficiency gain of +9.67 % (not
shown). It is on the efficient curve 76.6 % of the time.
Core Count Influence on CPU 𝒜. CPU 𝒜 has a single
DVFS domain, which means that every process on each core
influences the others. This has a negative impact on perfor-
mance and efficiency. While 𝒜1 sees a +12 % average effi-
ciency gain, it is reduced to +5.8 % on 𝒜4 (4 cores utilized).
We see the highest efficiency gain in 557.xz, which is +17.1 %
vs +13.8 % (not shown). The relative difference is smaller due
to the overall fewer faultable instructions. These cause fewer
DVFS curve switches, influencing other cores less. For bench-
marks that are primarily on the conservative curve, multiple
cores have a small impact due to little curve switching. The
difference for 520.omnetpp is +0.52 % on 𝒜1 to +0.17 % on
𝒜4 (not shown). Overall, SUIT with DVFS curve switching
unfolds its full potential on CPUs with per-core frequency
and/or voltage domains. Laptop CPUs often only have up to 4
cores that tend to be underutilized given typical office or web
browsing usage. But even with 4 fully utilized cores SUIT
has a small edge on the efficiency with +5.8 % on average.
Optimal Operating-Strategy Parameters. The operating
strategy is configured with four parameters, see Section 4.3.
We ran hundreds of simulations to find the optimal values
to maximize the efficiency gain and used them for the evalu-
ation. The result is shown in Table 7. We did not see a large
impact of the parameters on the efficiency in a large range of
values. Varying, e.g., the deadline ±10 µs changes the aver-
age efficiency by only -0.61 %. This indicates that workloads
tolerate a range rather than requiring individual parameters,
which simplifies SUIT as an operating system policy.

6.5 Frequency Operating Strategy on ℬ
CPU ℬ has per-core frequency domains but a single voltage
domain. To be independent of the number of cores, it uses the
frequency to change the DVFS curve (𝐸 ↔ 𝐶𝑓 ). Changing
the frequency takes 30 times longer than on CPU 𝒜 and 𝒞,
explaining the large impact on performance and efficiency.

6.6 Instruction Emulation

In Table 6, operating strategy 𝑒 shows the results for instruc-
tion emulation. For brevity we did not include emulation
on CPU 𝒞 as the results are very similar to CPU 𝒜. On 𝒜
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Figure 16. The performance and efficiency impact of SUIT on CPU 𝒞 running the 𝑓𝑉 operating strategy.

Table 6. Power saving and performance impact of SUIT running on different CPUs with different operating strategies (OS) at a −70 mV and
−96 mV undervolt. 525.x264 is shown explicitly as it is most adversely impacted by increasing the IMUL latency. All colored cells show an
increase in efficiency or performance, where darker shades indicate the highest benefit in the respective column.

70 mV Undervolt 97 mV Undervolt

CPUcoresOS SPECgmea
n
SPECmedi

an
525.x

264
SPECnoSIM

D
Nginx VLC SPECgmea

n
SPECmedi

an
525.x

264
SPECnoSIM

D
Nginx VLC

𝒜1 𝑓𝑉
Pwr −5.6 % −7.1 % −7.1 % −7.1 % −3.5 % −3.9 % −9.7 % −11 % −12 % −15 % −5.8 % −6.3 %
Perf. −0.2 % −1.3 % −1.3 % +3.0 % +0.5 % −0.4 % +0.8 % +1.3 % 0.1 % +3.4 % +1.2 % +0.2 %
Eff. +5.7 % +6.2 % +6.2 % +11 % +4.2 % +3.6 % +12 % +14 % +14 % +21 % +7.4 % +6.9 %

𝒜4 𝑓𝑉
Pwr −4.6 % −0.1 % −6.9 % −7.4 % −1.0 % −1.0 % −8.9 % −8.7 % −13 % −16 % −1.6 % −1.6 %
Perf. −3.9 % −0.0 % −7.9 % +1.8 % −0.3 % −0.6 % −3.6 % −3.5 % −7.2 % +1.8 % −0.1 % −0.5 %
Eff. +0.7 % 0.1 % −1.0 % +10.0 % +0.7 % +0.4 % +5.8 % +5.7 % +6.7 % +22 % +1.5 % +1.1 %

𝒜∞ 𝑒
Pwr −7.5 % −7.6 % −5.4 % −7.5 % −7.2 % −7.2 % −12 % −12 % −10 % −17 % −12 % −12 %
Perf. −42 % −12 % +6.2 % +1.4 % −98 % −92 % −42 % −12 % +6.1 % +1.4 % −98 % −92 %
Eff. −37 % −4.5 % +12 % +9.6 % −98 % −91 % −34 % +0.6 % +18 % +22 % −98 % −91 %

ℬ∞

𝑓
Pwr −8.1 % −7.8 % −7.8 % −9.1 % −4.4 % −4.4 % −12 % −11 % −11 % −14 % −6.7 % −6.7 %
Perf. −7.8 % −7.8 % −9.2 % +0.4 % −2.5 % −2.5 % −10 % −11 % −12 % +0.6 % −2.3 % −2.3 %
Eff. +0.3 % −0.0 % −1.6 % +11 % +2.0 % +2.0 % +1.4 % 0.1 % −1.6 % +17 % +4.7 % +4.7 %

𝑒
Pwr −9.2 % −8.0 % −11 % −9.2 % −9.8 % −9.8 % −14 % −13 % −16 % −14 % −15 % −15 %
Perf. −26 % −5.1 % +15 % −0.5 % −96 % −80 % −26 % −5.2 % +19 % 0.0 % −96 % −80 %
Eff. −19 % +3.1 % +28 % +9.5 % −95 % −78 % −14 % +9.3 % +41 % +17 % −95 % −76 %

𝒞∞ 𝑓𝑉
Pwr −5.6 % −7.1 % −7.1 % −6.1 % −3.6 % −4.0 % −9.8 % −11 % −12 % −14 % −5.8 % −6.6 %
Perf. −0.8 % −1.9 % −1.9 % +3.5 % +0.3 % −1.1 % +0.2 % +0.2 % −0.6 % +3.8 % +1.0 % −0.6 %
Eff. +5.1 % +5.5 % +5.5 % +10 % +4.0 % +3.0 % +11 % +13 % +13 % +21 % +7.3 % +6.4 %

Table 7. The optimal parameters for the 𝑓𝑉 operating strategy and
trashing prevention (see Section 4.3) used for all simulations.

CPU p_dl p_ts p_ec p_df

𝒜 & 𝒞 30 µs 450 µs 3 14
ℬ 700 µs 14 ms 4 9

the efficiency impact is −34 % on average. A few dominant
negative results skew the geometric mean so that the me-
dian efficiency increase over all benchmarks is +0.6 %. With
𝑓𝑉 , all SPEC benchmarks show increased efficiency, ranging
from +0.52 % to +17.1 %, 𝜎 = 5.9. With emulation, efficiency
ranges from −91.2 % to +27.0 %, 𝜎 = 36.6.
The performance of emulation depends only on instruc-

tion frequency but not distribution. This becomes evident
when comparing the results with 𝑓𝑉 on CPU 𝒜: Nginx ex-
periences the largest difference in efficiency: +7.4 % with 𝑓𝑉

but −98 % with emulation. The short bursts of many AES

encryptions are good for DVFS curve switching but impose
prohibitive costs when every single encryption causes a ex-
ception for emulation.
525.x264 has the overall highest efficiency gain of +41 %

on CPU ℬ. To simulate instruction emulation we include
the benchmark results without SIMD instructions from Sec-
tion 6.7, there 525.x264 is 22 % faster. This is combined with
the 20 % efficiency increase at −97 mV (Section 5.4) and the
short exception delay of CPU ℬ (Section 5.3).
The threshold for a positive efficiency impact is approxi-

mately one disabled instructions per 4.1 × 1010 instructions.
An exact threshold is impossible to define because the distri-
bution of the instructions and the complexity of the emulated
instructions have an impact as well. This shows that the vi-
ability of instruction emulation is highly dependent on the
workload. However, due the hardware-software co-design
of SUIT, the operating system can dynamically choose the
best operating strategy for each workload.
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Table 8. The number of SPEC CPU2017 benchmarks where compil-
ing without SIMD instructions or using SIMD instructions and hav-
ing the overhead of SUIT leads to higher performance at −97 mV.
Emulation is always worse but does not require recompilation.

𝒜1 𝒜4 𝒜∞ ℬ∞ 𝒞∞
𝑓𝑉 𝑓𝑉 𝑒 𝑓 𝑒 𝑓𝑉

No SIMD 15 21 23 21 23 16
SUIT 8 2 0 2 0 7

6.7 SPEC without SIMD Instructions

In Section 5.8, we compared SPEC CPU2017 compiled with
and without SIMD instructions. We now use these numbers
to evaluate if compiling an application without SIMD is more
efficient than using SUIT to execute them securely.

The benchmarks using SIMD have an overhead from SUIT
while the others do not but observe the overhead from not
using SIMD, see Section 5.8. We compare these results and
then individually conduct a sensitivity study assessing the
performance before computing the mean over all bench-
marks. Table 6 shows the results in the column SPECnoSIMD.
The average score over SPEC CPU2017 on CPU 𝒞 is +21 %.
Emulation is always worse as it incurs the same overhead as
SPECnoSIMD plus the emulation call overhead but does not
require recompilation. Thus, in the emulation SPECnoSIMD
column no instructions are emulated, i.e., the column shows
the average if all benchmarks are compiled without SIMD.
Table 8 shows how often the performance benefits from

the compile-time decision to disable SIMD instructions. On
CPU ℬ this is almost always the case due to its long fre-
quency change delay. However, compiling without SIMD
instructions is very unfavorable for some SPEC CPU2017
benchmarks. The worst case on CPU 𝒞 is 508.namd. The
efficiency increases by +12.4 % with SUIT but decreases by
−20.5 % when compiling without SIMD instructions.

It is crucial to reiterate that these results do not translate
to CPUs without SUIT. Only with SUIT is the security and
correctness of the running applications guaranteed when
undervolting. Without such guarantees, any comparison is
deemed incorrect as it compromises security. Nonetheless,
these results show that having less #DO exceptions and DVFS
curve switches can be favorable for many benchmarks.

6.8 Performance and Efficiency Impact – Summary

On CPUs with one DVFS domain SUIT does not performwell
if all cores are fully utilized. However, it still achieves a slight
efficiency gain. On CPUs like this, emulation is better for
some benchmarks, but it has a very high variance in respect
to different workloads. The variance of the 𝑓𝑉 operating
strategy is lower. It is a good “one fits all” approach because
it stays on the 𝐶𝑉 p-state for workloads with a high num-
ber of potentially faulting instructions, inducing negligible
performance overheads. SUIT could dynamically switch be-
tween𝐶𝑉 and 𝑒 for highest efficiency. The frequency change

delay of CPU ℬ is too high to work properly with SUIT. Em-
ulation is more efficient than on 𝒜 and 𝒞 due to the shorter
exception delay. A strategy that uses emulation for some
workloads and deactivates SUIT for other workloads is the
best compromise. For many benchmarks compiling them
without SIMD instructions is most efficient. But this requires
recompilation for CPUs with SUIT. On CPUs without SUIT
this can be a disadvantage requiring different builds.
Due to the quadratic voltage dependency of the power

consumption the undervolting offset from 20 % of the aging
guardband has a large impact. But even without it SUIT
overall increases the efficiency by 5 % to 10 %.

6.9 Security Analysis

The security of SUIT rests on the security of changing the
CPU’s DVFS curve and increasing the IMUL latency. An abso-
lute argument or proof on the security of a specific approach
to DVFS may be infeasible in the presence of process varia-
tion. It would also, security-wise, go beyond the guarantees
vendors provide for current CPUs. Instead, we present reduc-
tionist arguments for each strategy showing that the security
with SUIT is equivalent to the security of current CPUs.
SUIT. With SUIT, we disable specific instructions, so that
they cannot fault. This removes these instructions from the
optimization vendors perform to determine the optimal num-
ber of cycles per instruction and clock frequency, yielding a
more efficient DVFS curve. For the remaining instructions,
the security level is exactly the same as for current CPUs,
as the vendor optimizes these instructions as usual and pro-
vides a DVFS curve for them. When a disabled instruction
has to be executed, we resort to a voltage-frequency level
the vendor determined to be stable in an optimization includ-
ing these instructions. SUIT implements this by lowering
the frequency (or increasing the voltage). Thus, in summary,
the security of SUIT is based on the processes that are al-
ready established by vendors but now performed separately
for conservative and efficient curves, i.e., without and with
considering the set of faultable instructions.
Increased IMUL Latency. We only found the IMUL instruc-
tions to be too frequent to trap efficiently. Increasing the
latency of an instruction increases the timing slack propor-
tionally. Increasing the latency for IMUL from 3 to 4 leads to
33 % of the latency being slack time [49]. Increasing the clock
frequency, on the other hand, reduces the instruction slack
proportionally, e.g., increasing it by 25 % reduces the slack
space for each instruction by 20 % [49]. We can also reduce
the voltage accordingly but the relation with the voltage
is not linear. Figure 13 shows the DVFS frequency-voltage
pairs on an i9-9900K. We can see that, in the best case at
5 GHz, instead of a 33 % increase in frequency we can reduce
the voltage by 220 mV. In the worst case, at very low fre-
quencies, the voltage reduction is negligible as the power
consumption of the CPU is not a concern. Reducing the volt-
age accordingly would lead to the same security as modern



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jonas Juffinger, Stepan Kalinin, Daniel Gruss, and Frank Mueller

CPUs currently have. Hence, security-wise, if we do not de-
crease the voltage further than indicated by these real-world
numbers, we do not lower the security of the system.

7 Related Work
Numerous prior works investigated undervolting [6, 7, 16,
30, 35, 36, 43, 51, 52]. What differentiates them from SUIT
is that they undervolt by removing or shrinking the CPU’s
guardband. In most of them, the impact of aging is out of
scope. Because SUIT shrinks the voltage from the variation
in the voltage requirements of instructions, the CPU keeps
the voltage guardband required for aging fully or most of it.
xDVS. Koutsovasilis et al. [36] observed that the minimum
CPU voltage depends on the workload. Their extended dy-
namic voltage scaling (xDVS) governor scales the voltage
according to the workload by taking performance monitor
counter readings into account. They observe over 40 % en-
ergy savings by undervolting the CPU by over 200 mV.
CADU++. Maroudas et al. [43] additionally differentiate
between kernel and user space for their workload dependent
undervolting, CADU++. They observed that the undervolt-
ing potential of user space code is consistently higher than
that of kernel code. On average they achieve over 240 mV
undervolting resulting in up to 30 % power savings. However,
CADU++ requires a voltage change on every kernel entry
and exit. According to our measurements, they ignore parts
of the voltage change delay by only considering the delay to
write the MSR, and not until the voltage actually changes.
ECC Cache Errors. Bacha et al. [7] base their work on
cache lines faulting first when undervolting Itanium CPUs.
We did not observe this on x86. The faults are corrected with
ECCs. A calibration phase finds the weakest cache line and
the faulting voltage level, which can be repeated periodically
to counter aging. They achieved a 33 % power reduction.
Razor. Ernst et al. [13] proposed Razor. It follows the ele-
gant idea of using slightly skewed clock edges and shadow
circuitry to detect when critical paths in circuits are about to
violate their timing constraints. This allows Razor to dynam-
ically find the optimal voltage and frequency for every chip.
While Razor promises substantial energy savings, the special
Razor circuits increase the complexity significantly. Razor
has still found no adoption in commercial systems today. In
comparison, SUIT comprises a rather simple set of changes
without any complexity increase on the circuit level.
Efficient Scheduling. Lawall et al. [38] group cores in a
nest to keep their clock frequencies high and schedule tasks
that share resources in proximity. This minimizes clock fre-
quency changes and sharing of data between sockets. 2- and
4-socket multicore machines gain up to 20 % performance
and efficiency. Gouicem et al. [18] design a scheduler that
minimizes frequency changes. They gain up to 56 % perfor-
mance on an 80-core Intel Xeon CPU. Similar scheduling

methods could also be used in conjunction with SUIT to
minimize DVFS curve changes.
Heterogeneous CPUs house sets of cores of different types
and capabilities. Examples are recent Intel CPUs with power
and efficiency cores [48] and ARMs big.LITTLE [5] design.
With large differences in power consumption between power
and efficiency cores, by design, they lack support for dynamic
adjustment of the number of cores for each type. SUIT dy-
namically adapts to workloads by running any number of
cores with the conservative or efficient DVFS curves.

8 Discussion
Protection against Undervolting Attacks. This work is
primarily aimed at providing a benign OS with a method to
securely reduce the power consumption of a computer. We
did not investigate if SUIT can also protect against under-
volting attacks [31, 47, 56, 60] by only allowing DVFS curve
switching if all faultable instructions are disabled.
Speculative Execution. Speculative out-of-order execution
of disabled instructions must not happen. This could cause
exploits like meltdown where the exception is only thrown
at retirement, which is too late. The 4 clock cycle IMUL is
not a faultable instruction and can be speculatively executed.
Side-Channel Leakage. An attacker could learn when dis-
abled instructions are executed to build a covert channel [22].

9 Conclusion
In this paper we proposed SUIT, a technique enabling sub-
stantial efficiency gains on modern CPUs. It is based on the
fact that only a small subset of instructions requires the con-
servative power margins observed on current CPUs. With
SUIT we disable the execution of faultable instructions and
run the CPU on a more efficient DVFS curve 72.7 % of the
time, increasing the efficiency by 11.0 % with no performance
impact over SPEC CPU2017, without reducing the system’s
reliability or security. Together with compile-time optimiza-
tions for SUIT the CPU efficiency increases by 20.8 % while
the performance increases by 3.79 %. Hence, we conclude
that SUIT is a practical solution to increase energy efficiency.
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A Artifact Appendix
A.1 Abstract

We provide artifacts to measure key results to perform the
trace-based simulation resulting in the numbers in Table 6.
While we provide artifacts to reproduce all results as well as
all our measurement and simulation results, only a subset of
the experiments is described in this document and part of
the artifact reproducibility evaluation.

A.2 Artifact check-list (meta-information)
• Program: SPEC-CPU2017 (proprietary, not included)
• Compilation: gcc / g++ version ≥ 9
• Run-time environment: debian-based Linux, root access
• Hardware: Intel CPU up until 9th generation
• Execution: Sole user, process pinning
• Metrics: Power savings, performance impact
• Experiments: CPU Microbenchmarks and Simulation
• How much disk space required (approximately)?: ≈ 200GB
• How much time is needed to prepare workflow (approxi-

mately)?: 4 h
• How much time is needed to complete experiments (ap-

proximately)?: 24 h
• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv3 License
• Data licenses (if publicly available)?: MIT License
• Archived?: 10.5281/zenodo.10479442

A.3 Description

A.3.1 How to access All code and data is available at
10.5281/zenodo.10479442. Due to license restrictions, the user
has to provide an iso image of the SPEC CPU2017 bench-
marks

A.3.2 Hardware dependencies An Intel CPU where un-
dervolting with the 0x150 MSR still works (≤ 9th gen if SGX
is disabled in the BIOS).

A.3.3 Software dependencies Linux distribution with
the possibility to install kernel modules, we used Ubuntu
20.04. SPEC CPU 2017 iso image.

A.3.4 Data sets We provide some data that takes too long
to record for the artifact evaluationluation. EHowever, very-
thingall code and instructions to record this data isare avail-
able.

A.4 Installation

Every experiment directory contains a Makefile. There are
some build dependencies: coreutils, build-essential,
libarchive-dev, make,linux-tools-generic

A.5 Experiment workflow

We provide artifacts to verify the following claims. Chained
together they result in similar numbers to the numbers of
Table 6. Due to process variations every CPU is affected

differently by undervolting, therefore, the results will not
exactly, i.e., they depend on the specific variations.

C1 Voltage Change Delay
C2 Frequency Change Delay
C3 Efficiency and Performance Impact of Undervolting
C4 Final Simulation

The gem5 simulations of the increased IMUL latency and
the recording of the instruction traces of the SPEC CPU2017
benchmarks take hundreds of hours to run. We publish the
results but also all artifacts to run these experiments.
All experiments come with a README.md file containing

additional information that does not fit this document.

A.6 Disclaimer

CPU undervolting can cause instabilities! This can break file
systems and cause data loss or corruption. Never run this
software on a system without backups. We are not responsi-
ble for any damage caused by this software.

A.7 Evaluation and expected results

For the first three claims C1 to C3 we do not expect specific
results. The simulation results of C4 show that SUIT has an
overall positive impact on CPU energy efficiency.

A.7.1 Voltage Change Delay
Measure the voltage change delay from Section 5.2.

Path: 5_microbenchmarks/1_voltage_change_delay

Run: ./run.sh
The run script first builds everything and then loads the ker-
nel module. If successful, the measurement is run, measuring
20 voltage offset changes of −70 mV. Finally, it calls the plot
script with the result.csv file to plot the data.

Plot: python3 user/plot.py result.csv
The plot script also prints the average time it takes to change
the voltage to stdout. This time is required later to define the
CPU for the simulation.

Result: Time it takes to change the core voltage.

A.7.2 Frequency Change Delay
Measure the voltage change delay from Section 5.2.

Path: 5_microbenchmarks/3_freq_change_delay

Prepare: Turn off hardware controlled p-states (HWP) by
booting the kernel with the intel_pstate=passive com-
mand line option.

Run: ./run.sh
The script measures 20 frequency changes of−500 MHz from
3 GHz. Finally it calls the plot script with the
result.csv file to plot the data.

Plot: python3 user/plot.py result.csv
The plot script also prints the average time it takes to change

https://zenodo.org/doi/10.5281/zenodo.10479442
https://zenodo.org/doi/10.5281/zenodo.10479442
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the frequency to stdout. This time is required later to define
the CPU for the simulation.

Result: Time it takes to change the frequency.

A.7.3 Efficiency and Performance Impact of Under-
volting
Measure the efficiency and performance impact of under-
volting from Section 5.4.

Path: 5.4_power_efficiency_and_performance
The README.md in this directory contains additional details.

Prepare: There are multiple preparation steps:
Install SPEC CPU2017
Do not forget to runcpu –update to update the installation
to the newest version.
Update the SPEC_PATH in the first line of
5.4_power_efficiency_and_performance/Makefile to point
to the SPEC CPU2017 installation directory.
Build with make and copy the built files with make copy. The
later command requires root privileges to set the root sticky
bit for the measure binary, because it must run as root but
we do not want to start SPEC CPU2017 as root.
Test the SPEC CPU2017 installation with:
runcpu –config=power –size=test –define \
undervolting=0 specrate

Run: SPEC CPU2017 is run twice, once with the CPU at
the default voltage and once with the CPU undervolted. The
undervolt offset is defined in the –define undervolting=X
command line argument when starting the benchmark.
Run with the default voltage:
runcpu –config=power –size=ref -n 2 \
–output_format config,csv –copies=$(nproc) \
–define undervolting=0 specrate
Run with a −70 mV offset:
runcpu –config=power –size=ref -n 2 \
–output_format config,csv –copies=$(nproc) \
–define undervolting=-70 specrate

Gather Results: The power measurement results are in
$SPEC_PATH/power_measurements the benchmark scores
in $SPEC_PATH/results. Combine them with:

mkdir -p results/spec
cp $SPEC_PATH/power_measurements/* results/
cp $SPEC_PATH/results/* results/spec

The files for the three CPUs from Table 2 are available at
10.5281/zenodo.10479442.

Plot: ./plot.py result
This plots the changes in CPU frequency, voltage, power and
benchmark scores. It prints the exact changes in % to stdout.

Result: In the last printed table, the relevant columns are:
pct showing the benchmark score increase and eff showing

the efficiency increase at −70 mV. We expect the benchmark
scores and efficiency to increase.

A.7.4 Final Simulation
Perform the final simulation from Section 6.

Path: 6.2_instruction_trace_based_evaluation

Prepare:
CPU Configuration File
Copy cpus/i9-9900K-70mV.csv to cpus/
cpu_name-70mV.csv as a starting point. The file is then con-
figured with the results from the previous experiments. An
exact description of all fields is in the README.md file.

Instruction Traces
We provide the instruction traces for all benchmarks at
10.5281/zenodo.10479442 instruction_traces.tar.gz ex-
cept for 520.omnetpp and 521.wrf, as they are too large.

Run: ./simulate_all.py cpu_name-70mV \
30,15,3,14 voltfreq "" path/to/spec/traces/5*

Postprocess: ./postprocess.py results_XXX.json
The simulation creates an output .json file containing the
results of each benchmark. Running the post-process script
prints the results formatted as a table to stdout.

Result: The last three columns are the most relevant, the
row geomean contains the numbers of Table 6:
• power perc: change in power consumption in %: “Pwr”
• perf perc: change in performance in %: “Perf.”
• eff perc: change in efficiency in %: “Eff.”
We expect the efficiency change to be positive to show

that SUIT is viable. Additionally, all three numbers should
be similar to numbers of 𝒜1 with the 𝑓𝑉 operating strategy
and column SPECgmean. The performance impact is allowed
to be slightly negative.

Because we cannot provide the traces for 520.omnetpp and
521.wrf the resulting mean is slightly better than with the
two benchmarks included. On our tested CPU 𝒜 at −70 mV,
excluding the two benchmarks increases the efficiency gain
from 5.7 % (see Table 6) to 6.1 %.

A.7.5 Regenerate Table 6
We are now able to generate Table 6 from the paper with the
additional results from this evaluation.

Path: 6.2_instruction_trace_based_[...]/scripts

Prepare: Update the file path at
generate_results_table.py:246 to point to the .json re-
sult file from the simulation.

Run: ./generate_results_table.py –full

Result: results_table.tex
When compiled it shows Table 6 with an additional CPU 𝒟
showing the results of this evaluation.

https://zenodo.org/doi/10.5281/zenodo.10479442
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