
Real-World Study of the Security of Educational
Test Systems

Stefan Gast, Sebastian Daniel Felix, Alexander Steimaurer, Jonas Juffinger,
and Daniel Gruss

Graz University of Technology, Austria

Abstract. Computer science education has a unique setting where stu-
dents write code commonly automatically tested in so-called “test sys-
tems”. While best practices for sandboxing are known in the academic
community, the security of real-world test systems is unclear.
In this work, we evaluate the security of 11 real-world test systems from
computer science university classes, including computer security classes.
We provide a systematic overview of these systems and group them into
3 categories. We identify 13 types of security issues, the most widely
spread ones affecting 5-6 of the test systems in our analysis. We practi-
cally show that all test systems in our analysis can be compromised and
develop new techniques to exfiltrate secret and privileged information,
including the use of side channels. We present 3 cases studies where we
show the specific bypasses possible in these real-world systems. Finally,
in a user study, we assess the impact a potential breach together with
the educators using these test systems. Our work shows that educational
test systems are particularly critical, as a compromise can lead to the
exposure of highly sensitive student and research data, and even embar-
goed vulnerabilities. Our results highlight that the real-world challenges
to run and maintain secure test systems are not solved in practice. While
we discuss best practices, our study reveals the need for new systematic
security approaches to secure this very common type of software system.

Keywords: Real-World Study, Untrusted Code, Test Systems

1 Introduction

A crucial element of university computer science education is that students
also practically write code. Educators review this code and often also used to
grade the students [18]. Practical programming courses range from introductory
courses to programming languages to advanced courses requiring direct hardware
access or courses for practicing the development of secure code and exploitation
of insecure code. Especially for larger institutions with thousands of students,
reviewing student code can accumulate to a significant workload [34].

A solution to this resource problem is the partial or full automation of the
code reviews [34, 26]. For this purpose, an automated “test system” [35] runs stu-
dent code with test inputs and analyzes the behavior and output. Especially for



2 S. Gast et al.

classes with thousands of users, this is a unique setting where large amounts of
untrusted code are run on university computer systems. There are different ap-
proaches on how to run the untrusted student code, ranging from simple scripts
that execute one program after another to the use of containers and virtual ma-
chines. Wilcox [35] already noted that security is a crucial aspect of these systems
and advised the use of chroot or virtual machines. Similarly, Paiva et al. [26]
argue that virtual machines and containers are among the most comprehensive
solutions to run student code securely. As the students are also often provided
with Git repositories via university GitLab instances, one can consider GitLab
Runners (the continuous-integration system integrated in GitLab) [11] for test-
ing student code. GitLab Runners can be configured to use a container or a
virtual machine. While under normal use, the output would be provided to the
developer, educators can restrict the information they hand to students, e.g., via
customized interfaces that communicate with GitLab through an API. However,
CI systems are intended for trusted environments, whereas in malware analysis,
where the fundamental assumption is that the code under analysis is malicious,
other tools, such as virtual machines [38], are used to fully isolate the mali-
cious code from the rest of the system. While best practices for sandboxing and
isolation are well-known [30, 20, 7], and some even come with provable security
guarantees [3], the situation for is less clear for real-world test systems, as these
are often not publicly available and not developed by a professional development
team. Importantly, prior work used literature surveys to assess the security of
automated test systems but not a practical study of real-world systems [26].

In this work, we evaluate the security of 11 real-world test systems used by
3821 students in computer science university classes during the time frame from
October 2023 to February 2024, including computer security classes. We studied
these systems and provide a systematic overview of the typical approaches these
systems follow. We identify 3 categories of systems: GitLab Runners with a
Docker registry, GitLab Runners with custom pipelines, and entirely custom
test systems that do not rely on a CI system as a basis. We identify 13 types
of security issues, the three most widely spread ones affecting 5-6 of the test
systems in our analysis.

We practically show that all test systems in our analysis can be compromised
and develop new techniques to exfiltrate secret and privileged information, in-
cluding the usage of side channels. We present 3 cases studies where we show the
specific bypasses possible in these real-world systems. In a user study, we assess
the impact of a potential breach together with the educators using these test sys-
tems. We show that test systems in university contexts are particularly critical,
as a compromise can lead to the exposure of hundreds of highly sensitive student
records, confidential research data, and in some cases even embargoed vulnera-
bilities. Our results highlight that the real-world challenges to run and maintain
secure test systems are not solved in practice. While we discuss best practices
that educators should follow, our study emphasizes the need for new systematic
security approaches to secure this very common type of software system.

Contributions. We summarize our contributions as follows.



Real-World Study of the Security of Educational Test Systems 3

1. We analyze the security of 11 real-world test systems in computer science
education practically used by 3821 students.

1

2. We identify 3 categories of systems and 13 types of security issues. We show-
case in 3 case studies the specific security bypasses possible.

3. We assess the impact of potential breaches in a user study, highlighting that
a compromise can even lead to the breach of vulnerability embargoes.

4. We highlight open challenges for real-world educational test systems, showing
that novel security approaches are necessary in practice.

2

Outline. Section 2 provides background. Section 3 presents our systematic
analysis, Section 4 the security issues identified, Section 5 three case studies, and
Section 6 our user study. Section 7 contextualizes our work. Section 8 concludes.

2 Background

In this section, we overview computer science education, focusing on higher edu-
cation, educational aspects of test systems in coding classes, principles of related
continuous integration systems, and misconfiguration of those.

Programming Education at Universities. In computer science-related study
programs, programming is a core concept in the curricula. Courses that involve
programming often comprise a heterogenous groups of students, continuous as-
sessment, and large performance differences between students [4]. In this context,
scalability is one of the major challenges for educators [19], leading to lack of
feedback and communication.

The Need for Automated Test Systems. Automated testing systems play
a crucial role in accommodating this complexity by providing personalized feed-
back, assessment, and support to students at different skill levels in many com-
puter science courses. Educators carefully design test suites and evaluation cri-
teria to assess students’ mastery of key concepts, problem-solving skills, and
software development practices, ensuring that assessments are meaningful and
relevant to the course objectives. Wrenn et al. [37] show that this widely used
approach may negatively impact the quality of the assessment of students due
to cases not fully considered in the test suites. However, Mitra [21] showed that
it still supports students to develop independent testing skills and positively im-
pacts their work, especially for underrepresented student groups. Test systems
exist for different programming languages, environments, and testing needs.

Continuous Integration Systems. Continuous integration (CI) refers to the
widespread [15, 31] practice of frequently integrating changes into a shared main-
line repository. Instead of postponing the integration to a later development

1
Students counted per course, i.e., number of individuals will be lower. Still, students
per course is the better metric for how much these systems were used.

2
We emphasize that, although we investigate educational test systems, the insights
of our work are not in the domain of educational science, i.e., what educators can
do to improve education, but in the domain of security research, i.e., what we need
from security research to improve the security of these real-world systems.



4 S. Gast et al.

phase, it is performed regularly, at least once per day. By this, CI aims to re-
duce and simplify integration conflicts, as changes do not accumulate over an
extended period, making conflicts more manageable and easier to resolve.

In addition to a shared and frequently updated mainline code base, CI in-
cludes automated builds and tests triggered by every mainline code update. This
ensures quick feedback about programming and integration errors, minimizing
the effort to narrow them down to specific changes.

CI systems, e.g., Jenkins [17], Travis CI [32], or GitLab Runner [10], enable
development teams to set up automated build and test pipelines. When triggered
by a code update, these systems fetch the current source code from the repository,
run the project-defined build and test pipeline, and report back the result via
email or a web interface. Pipelines are usually run on specialized executors, either
hosted by the vendor of the CI system or on a project-managed instance.

The actions to be executed during a pipeline run are defined by scripts. These
can be stored in the code base, together with the code of the project itself, or in
a separate code repository. Executors run these scripts and, during testing, also
the code of the project. Effectively, anyone with write access to the code base
can run arbitrary code on the executor. However, in usual development settings,
only development team members have write access. Consequently, executors do
not run untrusted code in these settings.

Furthermore, as best practices recommend [14, 12], pipelines typically run
ephemeral containers or virtual machines. Thus, pipelines always run the same
environment, without any traces of prior runs influencing the results. In addi-
tion, when configured correctly [12], this also enhances security, as potentially
dangerous code is restricted to interacting with its ephemeral sandbox.

Security Misconfigurations. To support a wide variety of programming lan-
guages, project management styles, application domains, and test cases, CI sys-
tems have to provide a large degree of flexibility. In addition to the ability to
execute arbitrary code within the pipeline, these systems also have a rich set
of configuration options. In GitLab, for example, the overall execution of the
pipeline is controlled by a configuration file within the code base [11], whereas
the web interface is used to assign executors (i.e., runners in GitLab terms)
to specific projects, pass environment variables to the executor and set up ac-
cess tokens. Especially in the context of isolating workloads, e.g., with Docker,
or container orchestration tools like Kubernetes, security misconfigurations can
compromise the entire system setup [36, 28]. However, misconfigurations can oc-
cur on any layer of the software stack, especially for use cases with a wide range
of configuration options [39], including the application level [8]. Based on their
analysis, Dietrich et al. [5] conclude that there are countless undiscovered se-
curity issues in systems connected to the Internet. In educational test systems,
misconfiguration issues can occur on all layers, e.g., within the container, the
runner, and the virtual machine hosting the runner. Finally, misconfiguration
can also be a reason for deferred software updates, among other reasons, again
leading to vulnerable applications [9].



Real-World Study of the Security of Educational Test Systems 5

3 Executing Untrusted Code in Educational Contexts

In this section, we systematically analyze the typical approaches of test systems
with respect to their security properties. We focus on 11 test systems from
computer science university classes, including computer security classes. All test
systems were in productive use in the time frame from October 2023 to February
2024, with 57 to 770 students per course, totalling to 3821 students.

3.1 Decentral Development of Test Systems

A solution to the resource problem of reviewing student code is automation [34,
26] with so-called “test systems” [35]. However, test systems are often developed
and deployed by educators of the courses rather than professionals aware of
security best practices. Several of the test systems we analyzed were developed
over the past 3 years and, in some cases, moved away from previously unified
and centralized test systems due to the specific requirements the different courses
have. Hence, there are different strategies to develop such systems. Among the 11
test systems

3
we analyzed, 6 opted for GitLab Runners with Docker registries.

This is in line with the best practices recommended by Paiva et al. [26], using
containers to run student code in isolation.

One test system used GitLab Runners but with a custom pipeline. In this
testing system, each push triggers the execution of a Python script. The script
builds and spawns three separate Docker containers that communicate with
each other. This approach allows for more precise management of the container
spawning process and isolation between different parts of the test system and
untrusted code, e.g., checks are not performed within the same container and
also not directly on the host system but run in another container, to also miti-
gate exploitation of this code. However, this approach requires significantly more
upfront development and maintenance.

Four test systems were not based on CI systems and developed from scratch.
The first (C4) is testing student code inside virtual machines, that are run
inside a chroot environment, following the recommendations by Paiva et al. [26]
and Wilcox [35]. This is also the case for the other three: System C8 is testing
student code by compiling it and running unit tests within a reference Ubuntu
virtual machine without any further isolation. Systems C10 and C11 are testing
student code with custom bash and python scripts inside Docker containers.

Table 1 provides an overview of the test systems, programming languages,
and educational context. The four systems-related courses use custom test sys-
tems (prefixed with a C), whereas all others rely on a GitLab-based approach
(prefixed with a G). Language-wise, there is a focus on C and C++, and in
about half of these systems, the build environment is also controlled by the user.
Finally, for the interfaces, most test systems expose an interface via Git, e.g.,
commit hooks or CI pipeline triggers, and to the web to check the results. Most
test systems directly rely on the GitLab interface for the students.

3
We note that one of the systems was set up by one of the authors of this paper.



6 S. Gast et al.

Table 1. Overview of the analyzed test systems.

System Educational Context Languages User Interface Students

GD1 Introductory C Git 770
GD2 Introductory C Git 366
GD3 Introductory C++ Git 547
C4 Systems C, C++, Assembly Git, Web 134

GD5 Formal Methods Python Git 125
GD6 Privacy C++, Python Git 57
GC7 Software Development Java Git 413
C8 Systems C++ - 547

GD9 Security Python Git 413
C10 Systems C, C++, Assembly Git, Web 374
C11 Security C Web 75

3.2 Threat Model of Running Untrusted Code

In our threat model, we assume malicious users intentionally submitting code
intended to exploit the test system. We assume the user has no knowledge about
the test system other than publicly available to all participants. We assume that
the host system spawning the test containers is running on the most recent ker-
nel and that it uses the most recent packages from its distribution. Furthermore,
we assume established software security features to be enabled, e.g., KPTI [13],
ASLR and KASLR [27, 6], hardware-assisted control-flow integrity [1, 16]. We
assume the educators’ credentials are appropriately chosen, secure against un-
permitted access, and possibly even protected with second-factor authentication.

For both GitLab Runners with Docker registries and GitLab Runners with
custom pipelines, we assume that student code is usually run in a container and
not directly under the user account of the educator. We also assume that GitLab
itself is up-to-date, i.e., no exploitation of bugs in the GitLab implementation.

A malicious user can obtain information such as the total runtime, log files,
and other custom artifacts the test system provides. The goal is to extract infor-
mation about the test system, the test cases, and access confidential data and
configurations, also confidential data unrelated to the course.

4 Security of Real-World Educational Test Systems

Educational test systems execute untrusted code by hundreds of potentially ma-
licious students. They also hold various sensitive information, e.g., test cases,
solutions, student records, and confidential data of the educators. In our anal-
ysis, we follow a 3-step approach: First, the security-critical assets on the test
system are identified (Section 4.1). Secondly, intentional features of the educa-
tional test system that may facilitate attacks are examined (Section 4.2). Finally,
the test system has to be assessed for security vulnerabilities, with the unique
setting of educational test systems in mind (Section 4.3).



Real-World Study of the Security of Educational Test Systems 7

4.1 Asset-oriented Security Evaluation

In this section, we discuss which assets might be of interest to an attacker. We
want to emphasize that this discussion is not comprehensive. However, there are
not only assets that are of direct interest to the attacker (primary interest assets)
but also assets that are useful in intermediate steps (secondary interest assets).
Primary Interest Assets. We consider assets to be of primary interest if
they contain information the attacker is directly interested in: Such information
includes everything that gives the attacker an unfair grading advantage, as well
as everything that directly breaks user privacy and confidentiality.

To gain a grading advantage, the attacker might want to exfiltrate non-
publicly available test cases, reference solutions, or other students’ solutions.
The attacker might develop against the test cases in a trial-and-error manner
or copy exfiltrated solutions, without actually reaching the learning goals. A
test system storing grades or points might also leak other students’ grades, real
names, email addresses, contact data, or other personally-identifying information
of the students or the educator, violating privacy and confidentiality.
Secondary Interest Assets. We consider assets to be of secondary interest if
they provide an intermediate step to obtain primary interest assets. Such assets
include credentials or access tokens protecting confidential data, e.g., private
repositories or container registries. While they do not contain the critical infor-
mation directly, the attacker can use them in a subsequent step to gain access.

For example, the test system might leak the access token for the container
registry, exposing test cases provided in a private docker container. If, due to
misconfiguration, the access token even grants write access, the attacker can
perform unauthorized modifications to the container. Similar attacks can be
imagined for access tokens protecting external test case repositories.

As another example, code execution as root might also be used to bypass
access control [33] and, in turn, to obtain a primary interest asset. The same
argument applies to container-to-host escapes. Furthermore, injecting malicious
code into the test pipeline might lead to primary interest assets.

4.2 Continuous Integration for the Attacker

Using CI systems to test student code has the advantage of providing feedback
quickly. Usually, within minutes after submitting their code, systems give stu-
dents feedback and a log file, indicating which tests passed. However, while such
short feedback loops are desired under normal circumstances, these might also
be helpful to an attacker. Attackers, too, get immediate feedback from the test
system, allowing them to test their exploits frequently and quickly.

The feedback usually includes a log file of the test run, which also typically
includes any custom output of the user program. If attackers gain unauthorized
access to security-critical information, they can directly print it and exfiltrate
it through the log. Similarly, information might also be exfiltrated via other
artifacts the pipeline creates. In addition, if Internet access is not blocked, the
attacker might send critical data to a web server they control.



8 S. Gast et al.

Even without log files, artifacts, or Internet access, the attacker can exfiltrate
data via covert channels, e.g., by encoding a byte in delayed execution time
dependent on the numeric value of the byte to leak. A multi-byte secret could be
transmitted in multiple pipeline executions, allowing the attacker to reconstruct
the secret byte-by-byte from the execution times.

4.3 Categorization of Security Issues

To identify the issues in test systems, we analyze the systems with respect to
the following four categories of security issues:
Output sanitization. As Paiva et al. [26] note, a secure test system should
block any attempt to leak sensible test data, e.g., “output data”, to the outside.
However, for virtually all systems we analyzed, the output data is intended to
be seen by the students. This setup introduces a significant challenge, requiring
filtering illegitimate output from legitimate output. This challenge is far from
trivial to solve, as an attacker can choose an arbitrary encoding for the secrets.
Permission issues. The test system must protect sensitive information from
the execution of student-provided code, i.e., access to critical assets should be
denied to untrusted code. The operating system supports this by enforcing file
access permissions or limiting access to other resources, such as processes. How-
ever, this requires that the permissions are set correctly by the test system. For
example, if student code runs under the same system account as the test case
owner, a malicious student could exfiltrate the test cases.

While it is challenging to design a test system with correct separation, the
confidentiality of the test cases and the integrity of the test system is still crucial.
Misconfiguration issues. Misconfiguration is a common source of security
problems. One of the most efficient ways to leak information about the system
or data is to use the Internet. If the test system allows Internet access, the
attacker can exfiltrate data to a web server under their control.

Another common misconfiguration is the use of outdated software. While we
assume the host system running the test containers to be up to date, this might
not necessarily be the case for the container images, where outdated software
might also be exploited. A large-scale study by Shu et al. [29] showed that about
30% of the Docker images available on Docker Hub have not been updated
within 400 days when that study was performed. Container images might also
ship custom software that is no longer maintained, making updating the images
challenging. Educators may be negligent with updating containers.
Environment sanitization issues. The test system must prevent students
from modifying the environment in a way that would yield unauthorized access
to the system or test cases. For instance, students should not be able to modify
the build system by modifying the Makefile. Therefore, build files are often
replaced with a reference file or checked for modifications by the test system.

Similarly, with GitLab Runners, the .gitlab-ci.yml file defines the pipeline.
However, this file should not be modifiable by the student, as this would allow
the student to modify the pipeline. Consequently, students can change pipeline
variables such as the entry point or add additional steps to the pipeline.



Real-World Study of the Security of Educational Test Systems 9

Table 2. Test systems and what attack vectors they mitigated. ✗ means vulnerable,
✓ means not vulnerable, ∼ means inconclusive.

Security Issue GD1 GD2 GD3 C4 GD5 GD6 GC7 C8 GD9 C10 C11

Unsanitized Output ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Timing Side Channels ✗ ✗ ✗ ∼ ✗ ✗ ∼ ∼ ✗ ∼ ∼

No Container ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Privileged Git Tokens ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Reference Solution ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Exec as Root ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

DOCKER AUTH CONFIG ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

ptrace ✓ ✓ ✓ ✗ ✗ ✗ ∼ ✗ ✓ ✗ ✓

Internet Access ✗ ∼ ∼ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Outdated Software ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Docker Socket Mount ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Modify Pipeline ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Build System Takeover ✗ ✗ ✗ ✗ ✓ ∼ ✓ ✓ ✓ ✓ ✓

5 Case Studies

Following the methodology described in Section 4, we analyzed 11 test systems.
As Table 2 shows, each of them was affected by at least one vulnerability. In
this section, we briefly summarize our most critical findings before we continue
by discussing 3 case studies in more detail.

Out of the 11 systems, 6 systems did not sanitize their output. At least 4 of
them allowed the tested code to establish outbound Internet connections, and
none of them fully mitigated timing side channels. Consequently, on all of these,
if student code has access to sensitive information, it can also exfiltrate it from
the test system, as we discuss in all our 3 case studies in more detail.

All of the 6 systems based on GitLab runners and Docker registries exposed
credentials for the registry to untrusted student code via the DOCKER AUTH CONFIG

environment variable. Effectively, this gives an attacker read access to the en-
tire Docker container, possibly including reference solutions and test cases. In
at least 3 cases, the exposed credentials even granted write permissions to the
Docker registry, enabling an attacker to modify the container image persistently.
For instance, this misconfiguration issue affects the test systemsGD5 andGD1,
discussed in Section 5.1 and Section 5.2, respectively. We emphasize that even
following best practices, this exposure of credentials is not documented as a se-
curity risk and even following the documented best practices on securing
Gitlab runners and Docker registries leaves this security issue unmitigated.

On 5 of the test systems, the reference solutions were accessible for an at-
tacker, either directly by examining the docker container or during the execution
of the tests (e.g., due to misconfigured file permissions). Examples of this are
provided in Section 5.1 and Section 5.2 for the GD5 and GD1 test systems.



10 S. Gast et al.

Furthermore, on 4 test systems, attackers could manipulate the test pipeline,
enabling them to inject arbitrary commands and run unauthorized code. For in-
stance, we found this environment issue in theGD1 test system (cf. Section 5.2).
Similarly, on at least 5 systems, attackers could inject arbitrary commands into
the build process by modifying the Makefile or other build scripts. For instance,
the GD1 and C4 test systems both had this issue (cf. Sections 5.2 and 5.3).

5.1 Case Study 1: Test System GD5

Our first case study is GD5, and we investigated the 4 categories of security
issues outlined in Section 4. GD5 is a system based on GitLab Runners, com-
bined with a Docker registry, which is not publicly accessible. Students can push
code into their GitLab repository, which is then tested within a Docker container
by the GitLab Runner. Subsequently, the log file is available as an artifact to
the students. Notably, the test cases and runtime are not randomized and highly
stable, i.e., 6 seconds with an empty submission where no tasks have been solved.
Output Sanitization. As a first category, we analyzed the system’s output
sanitization. Given the intention to provide users with the output, we observe
that system GD5 does not sanitize the output at all. However, this introduces
significant security issues, as a malicious user can print any data of interest
into the log file, which is then accessible through GitLab’s web interface, i.e.,
as an artifact. While this does not imply that leakage of valuable information
is possible, it is a direct path to information leakage when combined with any
misconfiguration, permission issue, or missing environment sanitization.

For completeness and going beyond the issues Paiva et al. [26] identified based
on their literature survey, we also tested the timing channel as a possible
output vector. In contrast to related work, which focused on guessing the class
of environment from inside a sandbox [22], we leak environment variables or
user credentials. These are often stored as base64-encoded strings (typically 26
characters), and hence, we focus on leaking such base64 strings. We encode
and transmit character by character, one per test run. For a single character,
we let the GitLab Runner sleep between 0 and 64 seconds, depending on the
base64 character to leak. Thus, after deducing the base runtime, the attacker
can infer the specific character transmitted from within the GitLab Runner.
Consequently, we can leak a GitLab authentication token within 156 s to 1820 s,
with an average around 988 s.
Permission Issues. Primary assets for a malicious user are test cases and the
reference solution. We analyzed system GD5 and discovered three main issues:
First, the reference solution was accessible to the malicious user from within
the Docker container, i.e., it was bundled into the Docker container. It is not
clear why this is necessary for testing, as the test system uses test cases. Hence,
a solution is to not include unnecessary secret data in the Docker containers.
Second, however, the test cases were also accessible to the malicious user from
within the Docker container, also bundled into the Docker container. In line with
Paiva et al. [26], neither the reference solution nor the test cases should be avail-
able to the user. A solution could be to restrict the permissions, e.g., provide



Real-World Study of the Security of Educational Test Systems 11

not read permissions to the user executing the student code. Finally, even if
these permission issues were fixed, the student-provided submission is executed
with root privileges inside the Docker container. Consequently, the student effec-
tively has unrestricted access to all data within the Docker container, regardless
of other restrictions, e.g., file permissions, made. Furthermore, root privileges
within containers are particularly dangerous when combined with misconfigura-
tion issues, e.g., unnecessary provision of capabilities to the container.
Misconfiguration Issues. As a third attack vector, misconfiguration issues
could expose confidential information, including secret test cases or a reference
solution. We identified two main issues in system GD5: The first issue is the pro-
vision of the ptrace capability. As we already noted, in system GD5, untrusted
code runs with root privileges within the containers. However, this combination
of root privileges and the ptrace capability effectively allows the student code
to attach (i.e., like a debugger) to any process within the container including the
parent process responsible for running the tests and evaluating the output of the
student-provided code, i.e., the process with full access to the test cases. The
second issue is the implicit provision of the DOCKER AUTH CONFIG environment
variable by the GitLab runner. GitLab runners use the DOCKER AUTH CONFIG

to access an image from a private container registry [11]. However, it is not
documented that containers implicitly inherit this environment variable, ex-
posing the credentials to authenticate against the private container registry.
Consequently, neither GD5 nor any of the other test systems we tested unset
this environment variable. We emphasize the significance of this issue, as the
DOCKER AUTH CONFIG credentials often include both read and write permissions
to the container registry. Thus, this misconfiguration not only exposes the confi-
dentiality of the test cases of the educators: A malicious user could overwrite the
existing image in the container registry with their own image, running arbitrary
code on every subsequent push of every student.
Environment Issues. For completeness, we also investigated the environment
issues but did not identify any particular issues that would allow for a takeover
of the build system or pipeline modifications.

5.2 Case Study 2: Test System GD1

Our second case study is system GD1, which we analyzed as described in Sec-
tion 4. GD1 is similar to our first case study test system, GD1, which is also
based on GitLab runners combined with a Docker registry.

With each git push, the student code is tested inside a Docker container by
the GitLab Runner. Once the test run is complete, students can view the corre-
sponding pipeline log. Additionally, students are provided with a report.html

document that includes both public and a select few redacted private test cases,
along with their corresponding inputs and outputs for the public test cases.
Output Sanitization. The first category we analyze is the output sanitization
of the test system. The output data is intended for students to receive feedback
on their submissions. In system GD1, the output data for each public test case
can be obtained from the report.html document. In addition, the pipeline offers



12 S. Gast et al.

metrics during runtime, such as testing times. We observe that no output saniti-
zation occurs for the output data in the report.html document. Consequently,
a user with malicious intent can print any data of interest, such as environment
variables and the file system structure.

We also tested the timing side channel as a possible output vector. The test
cases have a constant runtime, which allows us to leak environment variables
such as the DOCKER AUTH CONFIG environment variable encoded in the runtime.
The approach we follow, is the same as the one described in the first case study:
We encode and transmit character by character, one per test run, where each
character is represented by 1 second of timing delay. More efficient leakage is
possible if sub-second runtime information is available.

Permission Issues. In test system GD1, grading is based on the passed test
cases. There are both public and private test cases. Students have access to
the input and output data for all public test cases, but private test cases are
always redacted in the test report. Therefore, the test cases and the reference
solutions are the most interesting resources for a potential attacker. Based on
this assumption, we identified two issues in GD1:

Before building and testing the student’s submission, the test pipeline re-
trieves the latest test cases from private repositories. Authentication is required
to pull from a private Git repository. Hence, in GD1, GitLab API tokens are
provided via files, accessible to the unprivileged user. An attacker can leak an
API token through unsanitized output or side channels. The attacker can then
use these tokens to access and inspect repositories on a local machine. This can-
not only result in data leakage but also more severe security issues: API tokens
often have not only read but also write privileges. As a result, by modifying files
in the private repository, a student with malicious intent could delete or add
test cases, or even execute arbitrary code. In combination with misconfiguration
errors, this can lead to more devastating security compromises.

Secondly, the private Git repositories contain not only the test cases but also
the reference solution to the assignments. As the test system does not require
the reference solution, it should also not be present while testing the student’s
submission with the test cases. This is a significant issue, as the reference solution
is the most valuable resource for a potential attacker in our scenario.

Misconfiguration Issues. System GD1 suffers mainly from two misconfigu-
ration issues. The first issue is yet again the presence of the DOCKER AUTH CONFIG

environment variable. As we noted earlier, the DOCKER AUTH CONFIG credentials
often include both read and write permissions to the container registry. Com-
bined with the fact that the test system did not sanitize the output data, the
leakage of the DOCKER AUTH CONFIG credentials is a significant problem. We also
verified that the credentials provided had write permissions to the container reg-
istry. As a result, a malicious user could have overwritten the existing image in
the container registry with their new image.

The second issue is that outbound Internet connections are not blocked
throughout the entire pipeline. Internet connections are only blocked during
the build and test stages. As mentioned before, the pipeline requires this con-



Real-World Study of the Security of Educational Test Systems 13

nectivity to retrieve the latest test cases from private repositories. Once the test
cases are retrieved, the Internet connection is blocked for the duration of the
tests. After the tests are completed, the pipeline can connect to the Internet and
upload artifacts to a dedicated server.
Environment Issues. The fourth category of attack vectors are environment
issues. System GD1 also suffers mainly from two environment-related security
issues: First, students receive a .gitlab-ci.yml file containing the pipeline con-
figuration for the test system. This file defines the pipeline stages, the jobs ex-
ecuted in each stage, and their order. The .gitlab-ci.yml file is stored in the
student’s repository and executed by the GitLab Runner. It is a critical asset
for a potential attacker, as it can be modified to manipulate the pipeline. For
instance, an attacker can modify the entrypoint of the Docker container to run
unauthorized code. Additionally, the attacker obtains a command injection vul-
nerability since the script sections of the .gitlab-ci.yml file are executed as
shell commands following the Docker container entrypoint.

Secondly, the build process relies on the Makefile provided by the student.
The Makefile contains the build instructions for the student’s submission. How-
ever, the test system does not check the integrity of the Makefile or the com-
mands it contains. This is a significant issue, as the Makefile can be altered to
execute arbitrary commands instead of compiling the student’s code.

5.3 Case Study 3: Test system C4

For our third case study, we investigated C4. C4 is a completely custom and
independently developed system for testing low-level system code.

After students push their code into a GitLab repository, a web hook trig-
gers the system to pull the submission and to execute the following two steps:
First, the student code is built in a chroot environment following the best prac-
tices described by Paiva et al. [26]. The chroot environment is a separate root
file system that contains all the necessary tools and libraries to build and test
the student’s submission. Secondly, the resulting binary is tested within a cus-
tomized QEMU fork to obtain specific low-level event metrics. From each test
run, students get the build log and a report of unintended behavior or crashes.
Output Sanitization. We again first analyze the system’s output sanitization.
The system performs output sanitization in several places, yet not in all stages
of the test pipeline. For example, an attacker can write arbitrary text during
the build and startup phases. As the test cases reside in the chroot tree of the
build process, an attacker can directly exfiltrate them by writing them to the
log. Furthermore, the test cases are included in the built image, allowing the
attacker to dump them into the log during the startup phase.
Permission Issues. For completeness, we checked for permission issues but
did not identify any particular security-relevant issues.
Misconfiguration Issues. We observed three major misconfiguration issues:

Firstly, outbound Internet connections are unrestricted while running the
entire pipeline. This allows an attacker to exfiltrate arbitrary information to a
server, enabling similar attacks as with incomplete output sanitization.



14 S. Gast et al.

low medium high

0

4

8

C
o
u
n
t

a. Reading solutions of
other students.

low medium high

b. Writing solutions
of other students.

low medium high

c. Read access to the
test cases.

low medium high

d. Write access to the
test cases.

low medium high

0

4

8

C
o
u
n
t

e. Reading any file in the
test container.

low medium high

f. Writing any file in
the test container.

low medium high

g. Read access to the
container registry.

low medium high

h. Write access to the
container registry.

low medium high

0

4

8

C
o
u
n
t

i. Read access on con-
tainer host.

low medium high

j. Write access on
container host.

low medium high

k. Execute permission
on container host.

Fig. 1. Severity assessment by the participants.

Secondly, C4 uses outdated software versions in multiple places, e.g., a
QEMU fork unpatched against multiple published vulnerabilities [23, 24], al-
lowing the tested code to escape the virtual machine. Furthermore, the software
within the chroot environment has also not been updated for years. For ex-
ample, the sudo binary is vulnerable against CVE-2021-3156 [25], enabling an
attacker to gain root privileges and escape the chroot environment.

Thirdly, C4 runs pipelines from different students always under the same
user and does not prohibit ptrace across different processes of the same user.
Thus, an attacker can embed code into the build phase, attaching itself to the
pipeline of another student. Hence, the attacker can read memory or files within
the victim’s chroot, obtaining the solution of other students. The attacker can
also hijack the victim’s pipeline process to execute arbitrary shell code, e.g., to
disrupt the victim’s process and manipulate the test results.
Environment Issues. Our investigation of environment issues yielded two
command injection vulnerabilities. First, the system executes several helper pro-
grams during the build process. These are built from source files, which can be
overwritten by an attacker to execute arbitrary code in the chroot environment,
enabling the attacks discussed above. Secondly, an attacker can also overwrite
the Makefile, enabling similar attacks.

6 User Study: Severity Assessment

To assess the severity of the security issues, we performed a user study with 6
educators responsible. The severity assessment of the read access (Figure 1a) is
strongly connected with the frequency with which student assignments change.
For courses where the assignments change every semester, the severity is assessed



Real-World Study of the Security of Educational Test Systems 15

as low. The main reason given was that there can always be communication
between students leading to plagiarism. Therefore, solutions must always be
checked for plagiarism, uncovering copied solutions from the test system. The
medium-high assessment of one participant was reasoned by possible access to
the solutions of assignments and because it is difficult to detect plagiarism. The
severity of write access (Figure 1b) to the solutions of other students was assessed
low because manipulation could easily be detected and there is little to gain.

The severity of read access to the test cases (Figure 1c) is assessed low for
courses where the test cases are public and use randomized inputs on the test
system. In this case, there is no advantage for an attacker. Most participants
assessed the severity medium because access to the test cases could allow them
to reverse engineer the solution. For courses where the test cases do not change
frequently, accessing them would have high severity. Manipulating test cases
with write access (Figure 1d) would be detected, i.e., has a low severity. Still, it
could be used to interfere with other groups.

The severity assessments of read or write access to all files in the test container
(Figure 1e and Figure 1f) are very similar to the assessment of accessing the test
cases. The reason is that the test systems do not contain other secret data that
an attacker could exploit. One participant notes that modifications of student
grades would be evident in log files.

In most cases, read access to the container registry (Figure 1g) gives an
attacker access to the test cases. This may be a security issue if the test cases are
private and not frequently changed. On the test system of one participant, read
access to the container registry gives an attacker access to the reference solution.
On one test system, the container does not contain the test cases. The severity of
a write access (Figure 1h) is assessed as medium, based on a few factors, including
the possibility to leak all student solutions. In some courses, the containers from
the registry are also run locally on student’s and educator’s systems. If started
in privileged mode or even without the container, which educators acknowledged
to happen in practice, this could cause a complete exploitation of a student’s or
an educator’s system. Still, they felt this is unlikely to happen.

Access to the host system (Figure 1i and Figure 1j) provides an attacker
access to sensitive student records, including students’ points and grades. Ed-
ucators typically do not know or are in charge of the host system and they
expressed the concern that access to the host will give an attacker also access to
other information not related to their course. The severity assessment for execu-
tion permission (Figure 1k) is the same as for write access on the host system,
as they ultimately give an attacker the same capabilities.

In multiple cases, educators ran student code on their own local system.
Educators who also engaged in vulnerability disclosures as part of their scien-
tific work reported that they malicious code and containers could theoretically
attempt to obtain embargoed information from their systems. Consequently, a
real-world risk is not only the disclosure of sensitive student records stored on the
educator’s system but also the breach of a vulnerability embargo if information
about the vulnerability is leaked by a test system user.



16 S. Gast et al.

7 Discussion and Limitations

Hardening educational test systems against security vulnerabilities is challeng-
ing, given that they have to execute untrusted code while they also process a
variety of security-critical information. Furthermore, resources to develop and
maintain these test systems are often limited, highlighting a more generic issue
with the current security best practices. Automated approaches have been pre-
sented for similar cases in cloud scenarios and could potentially be adopted for
the test system use case [2]. Security-critical assets have to be identified (see
Section 4.1), and it is crucial to reduce these to a minimum. For example, refer-
ence solutions and other assets should not be stored on the test system if they
are not required for testing the submissions.

Providing users with the precise execution time of their tests, inherently
opens a timing side channel. Therefore, test system maintainers should consider
hiding the execution time from the students. Common misconfiguration errors
also include read access to student or testcase repositories, access to Internet
or communication sockets, but also setups that implicitly lead to outdated soft-
ware, e.g., manually patched software or environment configurations that prevent
automatic updates. Another common error here are container capabilities that
are not required for testing, such as the ptrace capability. As these capabilities
usually configure the interaction between processes inside the container and the
host kernel, they implicitly allow bypassing the sandbox boundaries in certain
ways. It is crucial that test system maintainers carefully review the capabilities
granted to a container. Furthermore, environment issues allow an attacker to
take over the build process or the entire test pipeline. Test system maintainers
should ensure critical control files are not overwritten by student code.

While arguably students may be most interested in bypassing the security
of the test system in an attempt to learn the test cases and improve their own
scores illegitimately, it is also comparably easy for a malicious actor to have a
person register as a student and then register for a course, in order to attack
the system of an educator frequently engaged in vulnerability disclosures. This
attack vector comes at a low cost and entry hurdle in many countries and with
a very low risk of legal consequences.

8 Conclusion

We evaluated the security of 11 real-world test systems from computer science
university classes, including computer security classes. We studied these systems
during the time frame from October 2023 to February 2024, involving 3821
student accounts, and provide a systematic overview of the typical approaches
these systems follow. We found the potential security impact of a compromise
to be the exposure of hundreds of highly sensitive student records, confidential
research data, and in some cases even embargoed vulnerabilities. Our results
highlight that the real-world challenges to run and maintain secure test systems
are not solved in practice. We emphasize the need for new systematic security
approaches to secure this very common type of software system.



Real-World Study of the Security of Educational Test Systems 17

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity. In: CCS
(2005)

2. Abbadini, M., Beretta, M., Facchinetti, D., Oldani, G., Rossi, M., Paraboschi, S.:
Lightweight Cloud Application Sandboxing. In: CloudCom (2023)

3. Bosamiya, J., Lim, W.S., Parno, B.: Provably-Safe Multilingual Software Sand-
boxing using WebAssembly. In: USENIX Security (2022)

4. Capovilla, D., Berges, M., Mühling, A., Hubwieser, P.: Handling heterogeneity in
programming courses for freshmen. In: Learning and Teaching in Computing and
Engineering (2015)

5. Dietrich, C., Krombholz, K., Borgolte, K., Fiebig, T.: Investigating system opera-
tors’ perspective on security misconfigurations. In: CCS (2018)

6. Edge, J.: Kernel address space layout randomization (2013), https://lwn.net/
Articles/569635/

7. Edge, J.: A seccomp overview (2015), https://lwn.net/Articles/656307/
8. Eshete, B., Villafiorita, A., Weldemariam, K.: Early detection of security miscon-

figuration vulnerabilities in web applications. In: ARES (2011)
9. Ferrari, D., Carminati, M., Polino, M., Zanero, S.: Nosql breakdown: A large-scale

analysis of misconfigured nosql services. In: ACSAC (2020)
10. GitLab: GitLab Runner (2024), https://docs.gitlab.com/runner/
11. Gitlab: Run your CI/CD jobs in Docker containers (2024), https://docs.gitlab.

com/ee/ci/docker/using_docker_images.html

12. GitLab B.V.: Security for self-managed runners (2024), https://docs.gitlab.
com/runner/security/

13. Gruss, D., Hansen, D., Gregg, B.: Kernel Isolation: From an Academic Idea to an
Efficient Patch for Every Computer. USENIX ;login (2018)

14. Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D.: Trade-offs in Continuous
Integration: Assurance, Security, and Flexibility. In: ESEC/FSE (2017)

15. Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, Costs, and Ben-
efits of Continuous Integration in Open-Source Projects. In: ASE (2016)

16. Intel: Control-flow Enforcement Technology Preview (6 2017), revision 2.0
17. Jenkins: Jenkins (2024), https://www.jenkins.io/
18. Kubincová, Z., Homola, M.: Code review in computer science courses: Take one.

In: Advances in Web-Based Learning (ICWL). Springer (2017)
19. Medeiros, R.P., Ramalho, G.L., Falcão, T.P.: A systematic literature review on

teaching and learning introductory programming in higher education. IEEE Trans-
actions on Education 62(2), 77–90 (2019)

20. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal (2014)

21. Mitra, J.: Studying the impact of auto-graders giving immediate feedback in pro-
gramming assignments. In: ACM Symposium on Computer Science Education
(SIGCSE) (2023)

22. Nappa, A., Papadopoulos, P., Varvello, M., Gomez, D.A., Tapiador, J., Lanzi, A.:
PoW-How: An Enduring Timing Side-Channel to Evade Online Malware Sand-
boxes. In: ESORICS (2021)

23. NIST National Vulnerability Database: CVE-2019-14378 (2019), https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14378

24. NIST National Vulnerability Database: CVE-2020-24165 (2019), https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24165



18 S. Gast et al.

25. NIST National Vulnerability Database: CVE-2021-3156 (2021), https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156

26. Paiva, J.C., Leal, J.P., Figueira, Á.: Automated assessment in computer science
education: A state-of-the-art review. ACM Transactions on Computing Education
(TOCE) 22(3), 1–40 (2022)

27. PaX Team: Address space layout randomization (ASLR) (2003), http://pax.

grsecurity.net/docs/aslr.txt

28. Rahman, A., Shamim, S.I., Bose, D.B., Pandita, R.: Security misconfigurations
in open source kubernetes manifests: An empirical study. ACM Transactions on
Software Engineering and Methodology 32(4), 1–36 (2023)

29. Shu, R., Gu, X., Enck, W.: A Study of Security Vulnerabilities on Docker Hub. In:
CODASPY (2017)

30. Shu, R., Wang, P., Gorski III, S.A., Andow, B., Nadkarni, A., Deshotels, L., Gionta,
J., Enck, W., Gu, X.: A Study of Security Isolation Techniques. ACM Computing
Surveys (CSUR) 49(3), 1–37 (2016)

31. St̊ahl, D., Bosch, J.: Automated software integration flows in industry: a multiple-
case study. In: ICSE Companion (2014)

32. Travis CI: Home (2024), https://www.travis-ci.com/
33. De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Access control: princi-

ples and solutions. Software: Practice and Experience 33(5), 397–421 (2003)
34. Wilcox, C.: The role of automation in undergraduate computer science education.

In: Computer Science Education (CSE) (2015)
35. Wilcox, C.: Testing strategies for the automated grading of student programs. In:

Computing Science Education (CSE) (2016)
36. Wong, A.Y., Chekole, E.G., Ochoa, M., Zhou, J.: On the Security of Contain-

ers: Threat Modeling, Attack Analysis, and Mitigation Strategies. Computers &
Security 128, 103140 (2023)

37. Wrenn, J., Krishnamurthi, S., Fisler, K.: Who tests the testers? In: International
Computing Education Research (ICER) (2018)

38. Yong Wong, M., Landen, M., Antonakakis, M., Blough, D.M., Redmiles, E.M.,
Ahamad, M.: An Inside Look into the Practice of Malware Analysis. In: CCS
(2021)

39. Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T., Zhou, Y.:
Encore: Exploiting system environment and correlation information for misconfig-
uration detection. In: ASPLOS (2014)


