
S C I E N C E P A S S I O N T E C H N O L O G Y

Institute of Information Security
Graz University of Technology

Jonas Juffinger

Attacking and Securing Leaky Systems
at the Hardware-Software Boundary

PhD Thesis
Assessors: Daniel Gruss, Onur Mutlu
July 2025

Abstract

The interactions at the boundary between hardware and software com-
ponents in modern computers are often a source of leakage. Side-channel
attacks leak private data such as passwords or web browsing behavior, e.g.,
via timing differences. Software-triggered hardware faults let attackers
elevate their privileges and fully subvert systems. Continuously smaller and
faster hardware increases the attack surface by undermining mitigation
efforts and introducing new vulnerabilities that can go unnoticed for years.

In this thesis, we significantly advance the understanding of the attack
surface at the hardware-software boundary and how defenses can constrain
it. In the direction of fault attacks, we show that DRAM disturbance
attacks, like Rowhammer, can exist for a long time before being fully
understood by discovering a link between effects observed in recent work
and our prior work from 2017. We also extend DRAM disturbance research
to new hardware by investigating how SSDs can be utilized in Rowhammer
attacks, finding lower bounds for SSD-based attacks. Both of these works
motivate principled mitigations against DRAM disturbance attacks that
are not tailored to specific attack patterns and targets. Hence, we present
a novel principled mitigation against DRAM disturbance attacks based on
a practical and efficient hardware-software co-design, exceeding the detec-
tion and correction capabilities of state-of-the-art solutions significantly.
Furthermore, we show that with a secure hardware-software co-design
against software-based fault attacks on the CPU, we can even reduce CPU
power consumption while increasing performance.

In the direction of side-channel attacks, we perform the first side-channel
analyses on modern commodity off-the-shelf SSDs. Even though SSDs are
widely used, they have not yet been studied as a source of side channels. We
close this research gap, by presenting two novel software-based timing side-
channel attacks on SSDs that leak sensitive user information, achieving
both, high temporal and spatial resolution.

This thesis consists of two parts. The first part contextualizes my contribu-
tions within the state of the art. The second part presents my unmodified1

first-author publications. All of these papers were anonymously peer-
reviewed and accepted at renowned international conferences.

1The content of the papers is unmodified from the camera-ready versions. The format
of the included papers was modified to fit the layout of this thesis.

iii

Acknowledgments

First and foremost, I want to thank my advisor, Daniel Gruss. You
persuaded me to do a PhD, and I am so grateful you did. Thank you for
all your support during my PhD, the interesting discussion, for giving me
the freedom to experiment and pursue my own research, and for being
generous with work from home, making my travels between Vienna and
Graz bearable.

I also want to thank Onur Mutlu for taking the time and effort to assess
my PhD thesis. Thank you also for giving me the chance to present my
work to your group and the great discussions that followed.

I want to thank Andreas Kogler. Your limitless perseverance keeps inspiring
me, and I often think back to our travels and presentations; they were
always fun and very well-prepared. I want to thank Stefan Gast. I still
remember our first day at the institute and our many great discussions
in the own exclusive office. You will continue to inspire me to question
absolutely everything. I want to thank Lukas Giner; you taught me
important life lessons and a lot about caches.

Especially, I want to thank my other colleagues, Sudheendra Raghav
Neela, Fabian Rauscher, Martin Schwarzl, Claudio Canella, Moritz Lipp,
Hannes Weissteiner, Carina Fiedler, Roland Czerny, Martin Heckel, Lukas
Lamster, Lukas Maar, and Theresa Dachauer. I could not have dreamed
of better people to work with. It was a pleasure discussing new, old and
stupid ideas, complaining about reviewer B, and celebrating successes with
you. All the best for finishing your PhD theses. I also want to thank all
the people I met and had a great time with at conferences, Stepan Kalinin,
Daniel Weber, Leon Trampert, Lukas Gerlach, Fabian Thomas, Marton
Bognar, Michele Marazzi, and many more. Thanks to all the unnamed
people and friends I met during this journey.

I want to thank my parents and family. Franziska and Christian, you are
the best parents one could wish for. Thank you for your unmeasurable
support, your drive to always strive for something bigger, and for giving
me the freedom to pursue my dreams. Thank you, especially Wolfgang
and all Höcks, Färbingers, as well as Rinderers, for being such great bonus
families. Thank you, Thomas; I think we perfectly complemented each

v

(a) Monstera Adansonii’s beautiful
perforated leaves.

(b) Golden pothos in the morning
sun.

Figure 1.: The fruits of procrastination. Golden pothos and Monsteras grow aerial
roots to climb trees and absorb water. A pole filled with moss is a
perfect medium for these plants’ and author’s support and hydration.2

other’s hunger for success. Thank you, Julian, for igniting my interest in
photography, a wonderful creative shared hobby not involving computers.

Thank you, Matthias, for all the years we lived together through school
and university. I know that I can always count on you, be it for life,
technical or running expertise. I also want to thank the friends I made in
Graz and Vienna, Florian, Christoph, Mike, Dominik, and Silva.

A very special thanks go to Paul Smisek and Paul Schmidmayr. While you
probably do not know each other, you set me up on a trajectory that led
to this thesis by supplying me with my own computers at a very young
age that allowed me to experiment with them freely, and introducing me
to Linux and programming.

I also want to thank my plants, shown in Figure 1, that gave me great
reasons to procrastinate, helping me to free my headspace and view
problems from new angles.

Finally, I want to thank my wonderful partner, Sarah. You are my biggest
love, inspiration, friend, and supporter. Thank you for enduring the many
lonely days while I was in Graz and at conferences. Thank you for sharing
the same slightly unhealthy work ethic that made it possible to work
through many weekends when deadlines were approaching. Thank you for
proofreading my paper drafts. Thank you for always cheering me up. I
would not have been able to finish my PhD without you.

2The author added this figure while procrastinating.

vi

Contents

I Attacking and Securing Leaky Systems
at the Hardware-Software Boundary 1

1 Introduction 3
1.1 Main Contributions . 6
1.2 Other Contributions . 10
1.3 Outline . 13

2 Background 15
2.1 Digital Circuits . 16
2.2 Computer Memory . 20
2.3 DRAM . 23
2.4 Solid-State Drives (SSDs) 27

3 State of the Art 31
3.1 DRAM Disturbance Attacks 32
3.2 CPU Undervolting . 45
3.3 Side-Channel Attacks . 47

4 Conclusion 51

References 55

II Publications 85

5 CSI:Rowhammer 87

vii

6 SUIT 87

7 Presshammer 87

8 HMB Rowhammer 87

9 HMB Side Channel 87

10 Secret Spilling Drive 87

11 Not So Secure TSC 87

viii

Part I.

Attacking and Securing
Leaky Systems at the

Hardware-Software Boundary

1

1
Introduction

Users store plenty of secret data on their computers, from secret keys and
passwords to private information like web browsing behavior. As users, we
have to trust the programs handling this information. But for programs
and the operating system to guarantee security, they themselves have to
trust the hardware. Leaky hardware, however, can expose secrets to an
attacker. This leakage can come in different forms, for instance, direct
information leakage through side channels, as well as software-based fault
attacks, like Rowhammer, introducing errors in the computer’s electronics,
i.e., faults, because of “leaking” stray electrons.

Electronics require specific environments to run in. If requirements are
violated, the electronic circuit can be disturbed, causing faults. These
requirements can be direct, like the supply voltage and maximum clock
frequencym or specifications on how the circuit must be operated, but also
outside factors, like temperature or the maximum strength of radiation
the circuit withstands. Faults in CPUs or microcontrollers can impact the
software running on them. When timed correctly or if the software state
is prepared properly, purposefully injected faults can predictably break
the software, undermining the system’s security [15, 25, 71, 229].

Until 2014, all fault attacks were performed with physical access to the
target device [14, 15, 71, 236]. The discovery that they can be caused only
by software has been more recent with Rowhammer [137] and overclocking
or undervolting attacks [179, 208, 243].

Rowhammer is a software-based fault attack affecting the DRAM [137]. It
was first identified as a potential security issue in 2014 [137], and only 9
months later, the first privilege escalation exploits were presented [229].
With the underlying effect being difficult to mitigate, seemingly every new
proposed mitigation [10, 30, 41, 45, 83, 145, 168, 171, 257] was defeated by
the new exploits and hammering techniques, published over the following
years [39, 52, 53, 74, 105, 125, 144, 156, 169, 190, 215, 216, 244, 245,

3

leaky
adjective

Something that is leaky has a
hole or crack in it that allows
liquid or gas to get through [46].

1. Introduction

256, 288]. Proposed and implemented mitigations were broken mainly
for two reasons: a deficient implementation due to cost or optimistically
misconfigured threshold values due to lack of insights into RowHammer
vulnerability [39, 53, 74, 105, 144, 163, 188, 277]. For example, target row
refresh (TRR) was implemented insufficiently and could, therefore, be
tricked to protect the wrong rows [53, 105]. Additionally, the discovery
of Half-Double Rowhammer [144] showed that TRR could be used as a
confused deputy, breaking the mitigation in two different ways. Already
existing memory protection mechanisms like error correcting codes (ECC)
are also ineffective as they can only correct a single bit flip, which is
insufficient for targeted Rowhammer attacks [39].

The other group of previously exploited software-based fault attacks
includes overclocking and undervolting attacks [36, 130, 179, 208, 243].
These attacks are enabled by kernel-accessible hardware interfaces that
allow software to control the CPU clock frequency and CPU supply
voltage independently. These two values, clock frequency and supply
voltage, are dependent on each other, and can cause faults in the CPU
if misconfigured [82]. The faults manifest in a small number of CPU
instructions rarely outputting wrong computation results, which can be
used to corrupt cryptographic algorithms, but also program flow and array
accesses. These can be used to attack trusted execution environments
like ARM TrustZone [208, 243] or Intel SGX [36, 130, 179]. However, as
numerous publications show, undervolting also has a great potential to
save CPU power [11, 12, 68, 124, 146, 147, 172, 193, 194].

Side-channel leakage happens whenever a secret influences an unintended
physical property that an attacker can measure. Safe crackers can feel the
slightest manufacturing imperfections when turning locks [184], programs
influence the power consumption of CPUs [31, 141, 157], or take a different
amount of time based on the secret [19, 139]. Information can also leak
through the state of a system, like the state of a CPU cache, influenced by
the secret. The CPU cache can again be measured through a timing side
channel to reconstruct the secret [191, 199]. Side-channel attacks can be
divided into physical and software-based attacks. Physical side channels
include electromagnetic emissions, power consumption, acoustic emissions,
temperature, optical emissions, and vibrations, among others. An attacker
typically needs physical access or close proximity to the device to measure
the side channel signal [23, 80, 141]. Software-based side channels can be
measured from software, and while the underlying reason can be manifold,
they mainly cause variations in timing [19, 139, 191, 199].

4

Novel Hardware

Side Channels Rowhammer
& Power

SSD Hammer [115]

SSD Contention [120]

SSD HMB Timing [121]

PT-Guard [224]CSI:Rowhammer [117]

SUIT [116]
SMTCache [67]

Presshammer [119]

Half-Double [144]
Collide+Power [143]

SnailLoad [55] Remote [57] SQUIP [58]
KernelSnitch [165] Test Systems [56]
Secure TSC [118]

TEEcorrelate [270]

IdleLeak [212]

Figure 1.1.: Overview over all my contributions. My main contributions to this
thesis are highlighted in bold. Circles with red text define attacks
and triangles with blue text defenses or neutral work.

Due to their high spatial and temporal precision, CPU caches were the
main software-based side-channel attack target for many years [76, 77,
89, 139, 176, 191, 202, 204, 211, 279, 290]. More recently, research has
also looked into side channels in other CPU and computer components in
general. These components include random-number generation logic [50],
execution ports [4, 22], execution schedulers [57, 58], cache occupancy [233],
the PCIe bus [241], idle states [212, 283], operating system data struc-
tures [111, 164, 165], device sensors [174, 186, 231, 242], software-based
power measurements [143, 157, 186, 242], GPUs [3, 47, 66, 113, 183, 242,
262, 268], frequency scaling [143, 159, 263, 264], and hard-disk drives [23,
80, 128, 155]. These countless side channels were shown to leak not only
cryptographic keys but also private user data like browsing behavior and
user input, or secret kernel information like heap pointers and KASLR
offsets.

5

1. Introduction

However, one component used in almost every modern computer is absent
from this list. Commercial off-the-shelf SSDs have seen only very little
research on their side channel behavior. While storage systems were already
identified as a means to construct covert channels in 1973 [150], only a
small body of work showed potential side channel leakage in smart SSDs
containing a programmable FPGA on the cloud [250, 251], and Liu et al.
[161] analyzed the now-discontinued Intel Optane persistent storage.

1.1. Main Contributions

This section introduces the first-authored papers included in this PhD
thesis. In total, I first-authored 7 papers, three of which were published at
top-tier conferences. Figure 1.1 gives an overview of all my contributions.
They range from a novel principled defense against Rowhammer [117];
a mitigation against privileged CPU undervolting attacks that does not
compromise on potential energy savings [116]; a study of the recently
discovered RowPress effect in light of our, in 2017 discovered, one-location
Rowhammer, including the first RowPress exploit [119]; two papers on
the security of the SSD host memory buffer feature, one analyzing its
vulnerability to Rowhammer [115] and one showing that the HMB causes
an exploitable timing side channel [121]; a comprehensive study on the
vulnerability of SSDs to a contention side-channel attack [120]; and, finally,
a virtual machine co-location detection method using the new secure TSC
feature of AMD [118].

CSI:Rowhammer – Cryptographic Security and Integrity against
Rowhammer [117]. With CSI:Rowhammer, we designed a principled
defense against Rowhammer that can be implemented with minimal hard-
ware changes and cannot be affected by an incomplete understanding of
the Rowhammer problem that broke earlier mitigations. CSI:Rowhammer
repurposed the additional memory used for ECCs to store a cryptographi-
cally secure message authentication code (MAC) computed over the data
stored in the DRAM. This code guarantees data integrity on every read,
completely independent of the cause of bit flips in the data. As MACs
are, by design, not invertible, they cannot correct bit flips in the data.
We show that bit flips can be corrected efficiently by search and that by
including the operating system into the correction effort, more advanced
corrections can be performed, e.g., by reloading corrupted data from the

6

1.1. Main Contributions

disk. We evaluated the security guarantees and showed that on a system
that is not under attack, silent data corruption happens on average once
every 109 billion years. A very fortunate Rowhammer attacker has a
chance of 9.75 × 10−5 % to produce a second pre-image when causing bit
flips once every 128 ms for a year straight. We evaluated the performance
overhead with gem5, showing that it is only 0.74 % on average. This work
was published at the IEEE Symposium on Security & Privacy (S&P) in
2023 [117] in collaboration with Lukas Lamster, Andreas Kogler, Maria
Eichlseder, Moritz Lipp, and Daniel Gruss.

SUIT: Secure Undervolting with Instruction Traps [116].
The voltage requirement of a CMOS circuit cannot be defined exactly.
Many unpredictable environmental factors like process variation, tem-
perature, aging, or input voltage fluctuations do have an impact on the
propagation delay of a CMOS circuit at specific voltages [64, 148, 153]. If
the propagation delay is too high, undetectable faults can happen inside
a CPU [167, 192]. Prior work showed that these faults can be caused by
privileged software on ARM and Intel CPUs and used to attack trusted
execution environments [15, 36, 130, 179, 208, 243]. However, apart from
these faults, undervolting a CPU can significantly reduce power consump-
tion [11, 12, 68, 124, 146, 147, 172, 193, 194] and even increase performance
due to thermal and power throttling of CPUs [70, 197, 263]. With SUIT,
we show that CPU undervolting can be made secure and reliable by trap-
ping or slightly modifying a small subset of “faulting” instructions. With
SUIT’s modifications, the CPU only runs in an undervolted state with
these faulting instructions disabled. If the running program executes a
disabled instruction, the CPU traps, and the operating system increases
the voltage to guarantee successful execution. Handling the undervolting
state in software allows the operating system to optimize the CPU to the
currently running workload dynamically. With SUIT we can reduce the
power consumption by up to 20 % with a performance increase of over 3 %.
This work was published at the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
in 2024 [116] in collaboration with Stepan Kalinin, Daniel Gruss, and
Frank Mueller.

Presshammer: Rowhammer and Rowpress without Physical Ad-
dress Information [119]. In 2018, we discovered one-location Rowham-
mer, a new hammer method that only accesses a single row in DRAM [74].

7

1. Introduction

We explained the unexpected finding of one-location Rowhammer flipping
bits, with the memory controller employing a closed-row policy [74]. Five
years later, in 2023, Luo et al. [163] discovered a different DRAM read-
disturbance phenomenon, called Rowpress. Rowpress flips bits by keeping
a DRAM row open for long periods, unlike Rowhammer, which opens and
closes rows as quickly as possible [137, 163]. With single-row Rowpress
being almost identical to one-location Rowhammer, we revisited the latter,
analyzed it again, and compared it to Rowpress. In our work, we show
that one-location Rowhammer causes bit flips not only due to the memory
controller’s closed-row policy but also the Rowpress effect, coining the
term Presshammer. This finding shows that Rowhammer attacks can exist
for a long time before they are fully understood; only Luo et al. [163]
were able to actually realize the new underlying phenomenon. With our
new understanding of Rowpress, we built the first privilege escalation
exploit that uses timing side-channels to find the correct aggressor memory
locations for Rowpress. On our system, we were able to exploit Rowpress
in less than 10 minutes. This work was published at the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)
in 2024 [119] in collaboration with Sudheendra Raghav Neela, Martin
Heckel, Lukas Schwarz, Florian Adamsky, and Daniel Gruss.

An Analysis of HMB-based SSD Rowhammer [115]. Solid-state
drives can use a part of the main memory, called the host memory buffer
(HMB), to cache logical to physical storage address translations [185].
The HMB improves the SSD’s performance, as DMA accesses to the
main memory are faster than to the flash memory. In this work, we
analyze whether these DMA accesses can pose a security risk by causing
Rowhammer bit flips in the HMB. While we show that software-induced
bit flips in the HMB can cause denial of service, data loss, and even break
SSDs, the accesses from the SSD to the HMB are too infrequent to cause
actual Rowhammer bit flips. This work was published at the International
Conference on Applied Cryptography and Network Security (ACNS) in
2025 [115].

The HMB Timing Side Channel: Exploiting the SSD’s Host
Memory Buffer [121]. In our third work on SSDs, we again analyze the
host memory buffer, this time as a potential source of timing side-channel
leakage. We analyze four SSDs that use the HMB feature and reverse
engineer how they use the HMB and the cache replacement policies. We

8

1.1. Main Contributions

show that the HMB induces timing differences in SSD accesses, which are
clearly measurable from user space. We exploit this timing side channel in
four case studies: a covert channel between processes; with up to 8.3 kbit/s;
a UI redress attack that detects when the pkexec binary is executed; a
covert channel between virtual machines; and finally, a remote covert
channel exploiting a web server as a confused deputy to transmit data over
the network. This work was published at the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA) in 2025 [121]
in collaboration with Hannes Weissteiner, Thomas Steinbauer, and Daniel
Gruss.

Secret Spilling Drive: Leaking User Behavior through SSD Con-
tention [120]. Hard disk drives (HDDs) have long been known to be a
source of side-channel leakage, including acoustic emanation [80], electro-
magnetic radiation [23], and timing variation [34, 155]. Chen et al. [34]
suggest that SSDs would mitigate certain HDD timing covert channels be-
cause transfer speeds and response times of modern SSDs are magnitudes
faster than HDD’s. In this work, we show that user space applications
can, nevertheless, mount contention side-channel attacks. We analyzed 12
different SSD models from 7 vendors, ranging from entry-level PCIe 3.0
SSDs without DRAM to the latest PCIe 4.0 SSDs with DRAM caches.
First, we showed that, although different SSDs exhibit very different con-
tention behavior, a covert channel between virtual machines can transmit
data with up to 1 503 bit/s. Second, we invade user privacy by leaking
websites currently visited by the victim. We exploit the fact that web
browsers cache assets of websites, like images and code, and retrieve them
from the disk on subsequent visits [177]. Since every website has a differ-
ent number of assets and loads them at different times, they create an
exact fingerprint. Using a machine learning model, we could fingerprint
100 websites in an open-world scenario with an F1 score of up to 97.0 %.
Both the covert channel and website fingerprinting are surprisingly noise
resilient. This work was published at the Network and Distributed System
Security (NDSS) Symposium in 2025 [120] in collaboration with Fabian
Rauscher, Giuseppe La Manna, and Daniel Gruss.

Not So Secure TSC [118]. In cloud computing, programs of many
different tenants are running on the same machine, each in its own virtual
machine or container. This sharing of physical resources leads to countless

9

1. Introduction

different side-channel attacks [20, 101, 176, 240, 274, 285, 286, 290]. How-
ever, the attacker must be co-located on the same machine to exploit these
side channels [94, 289]. Distrusting the cloud provider or legal restrictions
can prevent tenants from moving to the cloud [201, 239]. AMD was the
first to introduce a confidential virtual machine CPU extension, SEV [127],
that isolates the virtual machine from the host. Recently, AMD added the
SecureTSC feature to SEV, which provides a fully trusted TSC timing
source for guests [5, 42]. Until then, the host could modify every timing
source inside virtual machines. In our work, we show that SecureTSC
can be used for reliable and fast co-location detection. It works because
every virtual machine can compute the exact uptime of the CPU it is
running on. Under the assumption that it is very unlikely for two CPUs to
share the exact same uptime, it can be used as a unique identifier. Using
one coordination server that collects and compares all uptimes, we can
detect co-location in a noisy environment in 0.13 seconds. Making use of
the birthday problem, an attacker only needs 480 virtual machines to co-
located at least two of them with a 90 % probability in a data center with
50 000 machines. This work was published at the International Conference
on Applied Cryptography and Network Security (ACNS) in 2025 [118] in
collaboration with Sudheendra Raghav Neela, and Daniel Gruss.

1.2. Other Contributions

This section briefly introduces the peer-reviewed papers I co-authored
during my PhD studies. I co-authored 10 papers, 6 of which were published
at top-tier conferences. These papers range from microarchitectural side-
channel attacks and defenses, to web- and kernel side-channel attacks, a
Rowhammer defense, and a software-based power-analysis attack.

Superscalar processors need a way to schedule ready instructions to the
many execution units efficiently. AMD uses a split scheduler design with
different schedulers for different execution units. In SQUIP [58], we show
that attackers can intentionally fill these schedulers to specific levels. If a
scheduler is full, this can cause a pipeline stall, which is measurable by the
attacker. Using this timing side channel, for example, the exact executions
of integer multiplications on the sibling SMT thread can be detected. We
exploit this side channel to leak an RSA private key and build a covert
channel. This work was published at the IEEE Symposium on Security
& Privacy (S&P) in 2023 [58] in collaboration with Stefan Gast, Martin

10

1.2. Other Contributions

Schwarzl, Gururaj Saileshwar, Andreas Kogler, Simone Franza, Markus
Köstl, and Daniel Gruss.

Virtual memory page tables are an often-exploited target of Rowhammer
attacks, leading to privilege escalation [39, 53, 105, 125, 144, 229, 256,
288]. PT-Guard [224] is a defense that utilizes unused bits of page-table
entries to store a cryptographic MAC for integrity protection. This work
only requires hardware changes and no changes to the operating system
software. The performance overhead is only 0.2 % We performed a study
of page-table entries on real systems regarding their value continuity
within page tables and showed that most entries can easily be corrected.
This work was published at the IEEE/IFIP International Conference on
Dependable Systems and Networks in 2023 [224] in collaboration with
Anish Saxena, Gururaj Saileshwar, Andreas Kogler, Daniel Gruss, and
Moinuddin Qureshi.

Software-based power side-channel attacks exploit secret-dependent power
consumption of CPUs only from software [157, 263, 264]. This is possible
because older CPUs provide direct energy measurements to software [157]
and because energy consumption influences the CPU clock frequency, which
is measurable from user space [263]. However, all previous works only
attacked specific targets on the system, mainly cryptographic instructions
or code [157, 263, 264]. With Collide+Power [143], we are the first ones to
show that software-based power side-channel attacks can be used to leak
arbitrary data. We do this by “colliding” the secret data with known data
known to the attacker in the memory hierarchy to force Hamming weight
leakage. This work was published at the USENIX Security Symposium
in 2023 [143] in collaboration with Andreas Kogler, Lukas Giner, Lukas
Gerlach, Martin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan
Mangard.

Minimizing the energy consumption of CPUs has become a very high
priority in the current age of mobile computing. Intel introduced the
tpause instruction that allows unprivileged software to enter new shallow
idle states. In IdleLeak [212], we show that this instruction can be exploited
to build a covert channel, an inter-keystroke timing, as well as a website
and video fingerprinting attack. IdleLeak is based on the fact that the
paused SMT threat is woken up by interrupts to the sibling thread, which
makes it possible to get the exact timings of interrupts of the other thread.
This work was published at the Network and Distributed System Security
(NDSS) Symposium in 2024 [212] in collaboration with Fabian Rauscher,
Andreas Kogler, and Daniel Gruss

11

1. Introduction

Our work Remote Scheduler Contention Attacks [57] shows that the AMD
split scheduler design can be exploited not only with handcrafted assembly
but also from JavaScript. This greatly increases the attack surface as, for
example, malicious advertisements could distribute the attack all over
the World Wide Web. We analyzed all remaining schedulers, including
FPUs absent from the original SQUIP paper [58]. Due to the lack of high-
precision timers, we used a microarchitectural race condition to measure
scheduler occupancy. With it, we built a high-precision inter-keystroke
timing attack and a covert channel between browser windows. This work
was published at the International Conference on Financial Cryptography
and Data Security in 2024 [57] in collaboration with Stefan Gast, Lukas
Maar, Christoph Royer, Andreas Kogler, and Daniel Gruss.

SnailLoad [55] is a novel timing side channel exploiting buffer occupancy
between endpoints on the Internet. The victim connects and downloads
something from the attacker’s server, for example, an image in an ad-
vertisement. The attacker’s server sends the image very slowly, 400 B/s.
The round-trip time between each sent TCP packet and the returning
acknowledgment packet gives the attacker a very detailed picture of cur-
rent network utilization at the victim’s side. With SnailLoad, an attacker
is able to fingerprint the first 90 seconds of 10 videos with up to 98 %
accuracy and fingerprint 100 websites in an open-world scenario with
up to 63 % accuracy. This work was published at the USENIX Security
Symposium in 2024 [55] in collaboration with Stefan Gast, Roland Czerny,
Fabian Rauscher, Simone Franza, and Daniel Gruss.

KernelSnitch [165] is a novel generic timing side-channel attack exploiting
various buffers in the Linux kernel. By measuring hash collisions in specific
hash table buckets using timing differences of syscalls, addresses of kernel
objects can be leaked because they are used as a part of the hash function
input. Leaking kernel object pointers can make kernel exploitation more
stable. We also showed a covert channel and a website fingerprinting
attack. This work was published at the Network and Distributed System
Security (NDSS) Symposium in 2025 [165] in collaboration with Lukas
Maar, Thomas Steinbauer, Daniel Gruss, and Stefan Mangard.

In our real-world study of the security of educational test systems [56],
we evaluate the security of test systems from computer science university
classes and identify various security issues. In three case studies, we show
that security bypasses are possible. Finally, we perform a user study,
asking educators responsible for the test systems about the impact of
potential breaches. The breaches could compromise sensitive student

12

1.3. Outline

records, confidential research data, and in some cases even embargoed
vulnerabilities. This work was published at the Workshop on Operating
Systems and Virtualization Security in 2025 [56] in collaboration with
Stefan Gast, Sebastian Daniel Felix, Alexander Steinmaurer, and Daniel
Gruss.

SMTCache [67] is a new design for secure isolated L1 caches. SMTCache
has multiple L1 caches per core and uses only one L1 cache per security
domain. Therefore, different security domains cannot interfere with each
other. Because only one L1 cache is used at a time, this design does not
increase latency and increases power consumption only slightly. This work
was published at the International Conference on Availability, Reliability
and Security in 2025 [67] in collaboration with Lukas Giner, Roland Czerny,
Simon Lammer, Aaron Giner, Paul Gollob, and Daniel Gruss.

With TEEcorrelate [270], we show how performance counter values of a
confidential virtual machine guest can be made leakage-free, while still
preserving relevant information to the host. TEEcorrelate decorrelates
performance counter values using two components, aggregation of perfor-
mance counter values within configurable length windows, and deferred
and speculative performance counter increases within a configurable de-
viation range. We propose a window length of a few milliseconds and a
range of 1024 deviation. These values are enough to mitigate performance
counter attacks while the host can still perform load-balancing, accounting,
and detection of unusual or malicious activity. This work was published
at the USENIX Security Symposium in 2025 [270] in collaboration with
Hannes Weissteiner, Fabian Rauscher, Robin Leander Schröder, Stefan
Gast, Jan Wichelmann, Thomas Eisenbarth, and Daniel Gruss.

1.3. Outline

Chapter 2 provides background on digital circuits, CPUs, memory, solid
state disks, and confidential computing. Chapter 3 gives an overview of
the state-of-the-art Rowhammer attacks and mitigations, dynamic voltage-
and frequency-scaling studies and attacks, side-channel attacks, and cloud
co-location detection. Chapter 4 concludes Part I. Part II provides a
complete list of the first- and co-authored papers and the camera-ready
versions of the main contributions of this thesis in Chapters 5 to 11.

13

2
Background

In this chapter, we provide background on relevant knowledge for this
thesis. First, we explain how digital circuits and their main building block,
MOSFET transistors, work and how supply voltage influences circuit
timing. Then, we provide background on the memory subsystem of a
computer, detailing virtual memory and DRAM. Finally, we give a short
background on solid state drives (SSDs).

15

2. Background

Combinational
Logic Circuit

Memory Clock

Input Output

Figure 2.1.: A synchronous sequential digital circuit. The combinational circuit
transforms the input and data stored in the memory into output and
data to store for the next clock cycle.

2.1. Digital Circuits

Strongly simplified, digital circuits are built using a large number of
connected transistors (electronic switches) to transform input to output
signals and store data [82, 148]. The transistors are connected to build
different basic building blocks [82, 148]. One large set of building blocks is
logical gates that perform a logical operation on their inputs and output
the results; another set is flip-flops, used as a memory to store a binary
value between clock cycles.

These logical gates are then connected to form combinational logical
circuits to perform, for example, mathematical operations like addition or
multiplication. The flip-flops are combined to build SRAM memory, storing
multiple bits, like registers or caches [82, 148]. Connecting a combinational
logical circuit with memory creates a sequential digital circuit, as shown in
Figure 2.1. The combinational circuit transforms an input and a previous
state into an output and values to store in the memory. On each clock
cycle, the memory stores the values at its inputs and outputs them until
the next clock cycle [82, 148].

2.1.1. Metal-Oxide-Semiconductor Field-Effect Transistor

Metal-Oxide-Semiconductor Field-Effect Transistors, short MOSFETs, are
the dominantly used type of transistors for digital circuits [82, 255]. Their
advantages are small static power consumption and size. Figure 2.2 shows
a section view of a planar n-channel MOSFET. The substrate is slightly
p-doped silicon, the drain and source contacts are n-doped. An insulator

16

2.1. Digital Circuits

P-Substrate

Source Drain
Insulator

Gate
- +

(a) Open MOSFET, no current is
flowing between source and drain.

P-Substrate

Source Drain
Insulator

Gate
- ++

- - - - - -- - - - -- -

+ + + + + +
+ + + +

(b) Closed MOSFET, current is flow-
ing from the source to the drain.

Figure 2.2.: The structure of a planar N-channel MOSFET in silicon. The gate is
used to “open” and “close” the transistor. To “close” the transistor,
i.e., make it conductive between the source and the drain, a positive
charge is supplied to the gate. This attracts negative charges that
conduct current.

between the substrate and the gate prevents charges from flowing between
the two [82]. The substrate is not conductive.

If a positive charge is supplied to the gate, it attracts electrons from the
substrate, repulsing positive charges, i.e., holes. Because of the insulator
between the substrate and the gate, the electrons gather between the
drain and source as shown in Figure 2.2b. If enough electrons gather, the
MOSFET starts conducting between the drain and source1. When the
positive charge is removed from the gate, the electrons recombine with
the holes, making the substrate non-conductive again [82, 255].

P-channel MOSFETs work the same as n-channel MOSFETs, with silicon
dopings and charges reversed. N- and p-channel MOSFETs are used
together in pairs to build Complementary Metal-Oxide-Semiconductor
(CMOS) logic used in every modern digital circuit [82, 255].

2.1.2. Circuit Timing and Voltage Requirement

For a digital circuit to work correctly, it must adhere to circuit specific
timing and supply voltage limits. If these limits are not met, the circuit
can experience faults [68, 82]. For example, in the case of CPUs, the
integer multiplication unit can output wrong results, which can be used
to attack trusted execution environments [179], see Section 3.2.

1Drain and source are electrically identical. Per definition, the source is the connector
with a higher potential than the drain. The source is “emitting” positive charges.

17

2. Background

tP

(a) tP of an
inverter.

Time

tP HL tP LH

Input

Output

(b) Impact of the tP s on the
signal through an inverter.

Supply Voltage

t P

(c) Relationship between supply
voltage and tP .

Figure 2.3.: The impact of the propagation delay tP on the traveling through an
inverter and the relationship between supply voltage and tP .

As discussed in the previous section, MOSFETs are switched on and off by
attracting charge carriers to the gate, a process that takes time. The gate,
insulator, and substrate form a capacitor that must be charged2 to attract
enough charge carriers to create a conductive channel in the substrate [68,
187, 255]. The time it takes to charge a capacitor is a function of its
capacity and charging voltage. The capacity is defined by the dimensions
of the transistor [235], smaller transistors switch more quickly. This is also
the reason for smaller node size CPUs reaching higher frequencies with
smaller supply voltages.

These switching delays of transistors in a logical gate cause a so-called
propagation delay tP as shown for an inverter3 in Figure 2.3. The prop-
agation delay of a circuit is defined by the addition of the propagation
delays of all individual logic gates on the longest path, also called the
critical path [187]. For a synchronous sequential digital circuit as shown
in Figure 2.1, the clock frequency must not be higher than the inverse
of the propagation delay of the critical path in the combinational logic
circuit. Otherwise, the output or the values stored in the memory may
not be fully computed and wrong [82].

In a real environment, the voltage frequency dependency of CMOS circuits
is influenced by many internal and external factors [92, 187]. Process

2There are many additional parasitic capacitors in a MOSFET transistor, all influencing
switching time [255].

3Because of the slightly different physical properties of p-channel and n-channel
MOSFETs, there is a difference in the tP from high to low tP HL and low to high
tP LH .

18

2.1. Digital Circuits

variation makes every transistor slightly different. Temperature greatly
influences the propagation delay of a circuit. Aging effects like hot-carrier
injection or bias temperature instability cause the propagation delay to
increase over time [227]. Additionally, sudden increases in current can
cause voltage droops. To counter all these effects, digital circuits are
supplied with a higher voltage than the absolute minimum required. This
additional voltage is called the guardband [92].

19

2. Background

CPU Core
Regs

L1i L1d

L2

LLC Slice

CPU Core
Regs

L1i L1d

L2

LLC Slice

M
em

or
y

Co
nt

ro
lle

rs

M
ain

M
em

or
y

Figure 2.4.: Memory organization in a modern computer. The further away a
memory is from the CPU core, the larger and slower it gets.

2.2. Computer Memory

A computer’s memory stores all the data the CPU needs during execution.
This includes the executed instruction stream as well as the data it
processes [259]. In all modern computers, DRAM is used as the main
memory because of its high density, low price, and low power consumption.
However, the DRAM is too slow to feed enough instructions and data
directly to the CPU, which is many magnitudes faster. Therefore, CPUs
contain multiple levels of caches that make recently executed instructions
and accessed data available with lower latency [237].

A logical layer, virtual memory, partitions the memory between all pro-
cesses and enables access rights and execution permission management.
It is configured with page tables that define to which physical address a
virtual address of a specific process is mapped to. The page tables are
set up by the operating system and used by the CPU to translate each
memory access [98].

2.2.1. Organization

Figure 2.4 shows memory organization from the registers, the memory
closest to the CPU, to the main memory, furthest away.

Registers are the memory closest to the CPU’s execution units, accessible
in a single clock cycle by CPU instructions. In the x86 architecture,
instructions can also directly address memory [97]. This is not possible
on ARM [9] or RISC-V [267], which have load and store instructions to

20

2.2. Computer Memory

access the main memory. There are typically 16 to 32 general-purpose
registers. Microarchitecturally, register names are not mapped to fixed
locations but are dynamically allocated in the register file, which is usually
a few hundred registers large. Registers use static random access memory
(SRAM).

Between the CPU cores and the main memory are multiple SRAM cache
levels to make data accessible with lower latency. Caches store data that
has a high chance of being accessed in the near future. They work based
on the principle of locality, which states that recently accessed data or
data close by has a higher chance of being accessed again soon. There
are multiple cache levels with increasing size and latency. Modern Intel
and AMD x86 CPUs typically use three cache levels [6, 97]. The last-level
cache is shared between all cores but partitioned into slices. Each core
has one slice, and the slices are connected with a ring bus or a mesh [178].
Apart from a handful of exceptions, caches use SRAM [82, 232].

Apart from caches for instructions and data, CPUs also contain a cache
for virtual-to physical address mappings, called the translation lookaside
buffer, short TLB. It is also split into multiple levels and caches for
translations of different page sizes [96].

The main memory is the largest and slowest memory of a computer that is
directly accessible by CPU instructions. It uses DRAM technology for its
high density and low cost. The main memory is described in more detail
in Section 2.3.

2.2.2. Virtual Memory

Modern computers execute many processes simultaneously besides the
operating system. For stability and security reasons, these processes must
not access the memory of other processes running. All modern CPUs
implement a way to isolate processes called paging. On a system with
paging, a process never accesses the physical memory directly. Instead,
it works in its own private virtual memory space that is translated to
physical memory by the CPU.

Paging fragments the physical memory into pages, typically 4 kB large. A
set of page tables, unique per process, maps the process’s virtual memory
pages to physical memory pages. Page tables are managed in a tree
structure. The highest-level page table is unique per virtual memory space.

21

2. Background

CR3
Virtual Address:

index index index index page offset

9 bit 9 bit 9 bit 9 bit 12 bit

PML4

PPN

PDPT

PPN

PD

PPN

PT

PPN

Data

4 kB Page

Figure 2.5.: On systems with memory paging, the virtual address is a set of indices
into a tree of page tables. The lowest-level page table contains the
page frame number or address of the physical memory page.

On x86, the physical address of the highest-level page table is stored in
the CR3 register. Every page table has 512 entries pointing to a lower-level
page table. The lowest-level page table points to the mapped page in
physical memory. As shown in Figure 2.5, the virtual addresses the process
uses are actually only a set of indices into all levels of page tables and an
offset within the page.

The operating system is responsible for managing the page tables for
each process and itself. A process can only access the physical pages
that are mapped in its own page-table structure. Apart from page-frame
numbers pointing to the next lower-level page table, they also contain
various bits that control, for example, access rights, i.e., whether the
program is allowed to read, write, and execute memory pages, or the
cacheability of the mapped page. Therefore, it is crucial that only the
operating system has access to page-table pages and not the user space
process itself. Some Rowhammer exploits gain access to their own page
tables to escalate privileges [37, 39, 52, 53, 75, 119, 125, 144, 256, 275,
288], see Section 3.1.3.

22

2.3. DRAM

Row Buffer

DRAM Bank

W
or

dl
in

e

W
or

dl
in

e

Bitline

Transistors

Capacitors

DRAM Cells

(a) The structure of DRAM. A cell consists of a transistor and a capacitor. In a
DRAM bank, cells are aligned in a grid, connected by the word- and bitlines.
The bitlines are connected to the row buffer.

Capacitor

n+

Capacitor

n+

Bitline

n+

Passing
Gate

Wordline Wordline

Transistor Transistor
p-substrate

(b1) The cross section of two cells
as marked by A A' in Fig-
ure 2.6b2.

A

A'2F

3F

(b2) Top view of the cell layout. A
single cell is 2F · 3F = 6F2 large.
The row buffer is not shown.

(b) The physical cell layout of modern 6F2 DRAM [88, 170]. The cells are arranged
slightly rotated to the word- and bitline grid for maximum density. Passing
gates exist because of the grid, but do not connect a bitline to a capacitor.

Figure 2.6.: The schematic and physical layout of DRAM cells and banks.

2.3. DRAM

Dynamic random access memory (DRAM) is a type of memory that is
characterized by its low price, low power consumption, and high density
compared to SRAM. These properties make it the practically exclusive
choice for the main memory of all computers, smartphones, and servers.
This makes the DRAM main memory the largest memory of a computer
directly accessible by CPU instructions.

23

2. Background

2.3.1. DRAM Cell

Its high density and low power consumption in comparison to static random
access memory (SRAM) is possible because every bit is stored with only
two components, one transistor and one capacitor, also called a storage
node. Because these capacitors slowly discharge, they require periodic
refreshes not to lose any data, hence, the name dynamic RAM [107].

Figure 2.6 shows the schematic and the physical layout of DRAM cells. A
cell is connected to two signal lines, as shown in Figure 2.6a. The wordline
controls the gate of the transistor, connecting the storage capacitor to the
bitline. The charge in the capacitor is read and written through the bitline.
Cells are connected through the word- and bitlines in a grid. The ends of
the bitlines are connected to the row buffer. By activating a wordline, all
capacitors in its row are sensed by the row buffer. DRAM operation is
described in more detail in Section 2.3.3.

Figure 2.6b shows the physical cell layout of modern 6F2 DRAM [88].
Figure 2.6b1 shows how two capacitors (storage nodes) are connected to
a bitline through a MOSFET transistor each. As shown in Figure 2.6b1,
the active region (p-substrate) is shared by multiple transistors and their
capacitors. This shared active region, which allows electrons to travel
between storage nodes, is the reason for the Rowhammer disturbance
effect [137] described in detail in Section 3.1.1.

Figure 2.6b2 shows the 6F2 layout of the storage node grid in silicon [88].
It is optimized for maximum density by arranging the transistors and
capacitors interleaved. The cross section shown in Figure 2.6b1 is marked
in Figure 2.6b2 with the dotted line. In the 6F2 layout, not all parts of a
wordline sit in an active region connecting a capacitor to a bitline. One
example of this is marked by the orange-striped field in Figure 2.6b1, also
marked in Figure 2.6b2. These regions are no real transistor gates and
are, therefore, called passing gates. They are the reason for the passing
gate disturbance effect exploited by the Rowpress attack [163], described
in more detail in Section 3.1.2.

2.3.2. DRAM Structure and Addressing Functions

The individual DRAM cells are segmented into banks that work indepen-
dently and allow for parallelized accesses from the CPU. The memory

24

2.3. DRAM

.. 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 ..

Channel

Bank Address 1
Bank Address 0

Rank
Bank Group 1
Bank Group 0

Physical Address

Figure 2.7.: The DRAM addressing functions of an Intel Skylake CPU with two
DIMMs, one for each channel and two ranks per DIMM [200].

controller of the CPU applies functions, called the DRAM addressing
functions, on the physical address to select a specific bank for each access.

The grids of transistors and capacitors storing the individual bits are
split up into banks. Rows of this grid are typically 8 kB wide. There is
one row buffer per bank, connected to the rows through the bitlines. On
some DRAM modules, the row indexes, i.e., wordlines, are scrambled.
This is relevant for Rowhammer attacks, the reason for it, however, is
probably due to electrical engineering [244]. A DRAM DIMM contains
multiple banks, 16 on DDR4 and 32 on DDR5 per rank. Four banks each
are combined into a bank group [107, 108].

A DDR4 DRAM DIMM is connected to the memory controller over a
channel. Most consumer CPUs contain two memory controllers and have,
therefore, two independent DRAM channels. DDR5 DRAM DIMMs have
two independent channels, doubling the number of channels in most CPUs
for more parallelism [108]. As the number of physical connections between
CPU and DRAM are still approximately the same for DDR4 and DDR5,
DDR5 has a doubled burst length to be able to transmit one cache line
(64 B) in a single burst over the 32 bit wide channel [108].

Commands to the different independent banks can be interleaved, reducing
the overall time the memory controller has to wait for finished commands.
To make the best use of this bank-level parallelism, the memory controller
interleaves the banks [96] by applying DRAM addressing functions on
the physical address to compute the channel, rank, bank group, and bank
select bits. DRAM addressing functions were first reverse-engineered by
Pessl et al. [200]. The DRAM addressing functions of an Intel Skylake
CPU are shown in Figure 2.7. New research followed up with newer tools,
getting the functions for newer CPU generations [16, 53, 60, 85, 86, 106,
261]. Jung et al. [122] further reverse-engineered the physical DRAM

25

2. Background

mapping by using faults induced by targeted heating to get the on-chip
location of DRAM cells.

2.3.3. DRAM Operation

The DRAM protocol is asynchronous. This means that the CPU adheres
to specific timings when sending commands, and the DRAM guarantees
that every command is finished within that time.

Data Access. To access data on the DRAM, the CPU selects a rank,
bank, and row and opens the row to move the data of the row into the
row buffer. To do this, the bitlines of the bank must first be precharged
(PRE). The wordline is activated, connecting the capacitors of a row to the
precharged bitlines, slightly changing the voltage. The sense amplifiers
detect the voltage change and store the result in the row buffer. Physically,
the row buffer and sense amplifiers are one component [170]. This process
is destructive, and it removes all charge from the capacitors in the row.
Therefore, if there is already data in the row buffer, it must first be written
into the previously opened row.

The memory controller can then access the data in the row buffer. The
row buffer acts like an 8 kB large cache, decreasing the latency of accesses
to the currently opened row. This creates a timing side channel, which
was first reported by Pessl et al. [200].

Refresh. The memory controller is also responsible for the refreshes
of all cells in the DRAM. It does so by periodically sending refresh
commands to the DRAM. The DRAM itself keeps track of which rows
were least recently refreshed and can refresh multiple rows within one
refresh command window.

The asynchronous nature of DRAM became a problem for on-DRAM
Rowhammer mitigations like TRR (see Section 3.1.4), as they only have
limited time to perform mitigating refreshes additional to the normal
refreshes within a refresh command window. Therefore, the DDR5 standard
implements an “Alert Back-Off” (ABO) back channel from the DRAM to
the CPU that allows the DRAM to request additional refreshes from the
CPU [108].

26

2.4. Solid-State Drives (SSDs)

P-Substrate

Source Drain
Insulator

Floating Gate

Control Gate- ++

- - - - - -- - - - -- -

+ + + + + +
+ + + +

(a) An erased flash memory cell, stor-
ing a logical 1. No electrons are
trapped in the floating gate. The
voltage at the control gate makes
the transistor conductive between
the source and the drain.

P-Substrate

Source Drain
Insulator

Control Gate- ++
- - - - - -- - - - - -

(b) A programmed flash memory cell.
Electrons are trapped in the float-
ing gate, raising the threshold volt-
age. The same voltage at the con-
trol gate does not make the transis-
tor conductive between the source
and the drain.

Figure 2.8.: A floating gate MOSFET. To program the cell, electrons are tunneled
into the isolated floating gate where they can stay for many years.

2.4. Solid-State Drives (SSDs)

Solid-state drives (SSDs) are storage devices that persistently store data
on integrated circuits, typically NAND flash memory. Because they do
not use any moving parts, they are faster than hard disk drives (HDDs).
Especially, the number of random input-output operations per second
(IOPS) is magnitudes higher on an SSD than on an HDD because of the
HDD’s required disk arm movements for random accesses.

2.4.1. Flash Memory

NAND flash memory is an integrated circuit solid-state memory [8, 280].
The storage of individual bits happens in floating-gate MOSFETs, as
shown in Figure 2.8. With a high voltage at the control gate, electrons can
be trapped in the floating gate (programming). These electrons increase
the threshold voltage of the transistor. The floating gate is fully isolated,
and the electrons stay there for many years. To erase a flash memory cell,
a voltage in the opposite direction is applied to the control gate to push
the electrons back out of the floating gate.

Due to the different high voltage required, NAND flash memory cannot be
written randomly, such as DRAM [8, 280]. However, data can be randomly

27

2. Background

Host OS

FTL
Logical Physical
Addr Addr

0x0001 BlockA, Pg3
0x0002 BlockA, Pg4
0x0003 BlockB, Pg1
0x0004 BlockA, Pg0

NAND Memory

Block A Block B

read / write

mapping

Figure 2.9.: The flash translation layer (FTL) translates the logical address used
by the host operating system to the actual physical location of the
page in the NAND memory on each access.

read from every location. Erased NAND flash memory stores all 1’s, to
write data, specific bits are then set (programmed) to 0. Reprogramming
is possible as long as the new data is a subset with only 1 to 0 transitions.
Erasing NAND flash memory takes significantly longer than reading and
programming it. Additionally, the number of bits that must be read,
programmed or erased at once differs. Typically, the page size used for
reads and programming is 512 B, 2 048 B, or 4 096 B. Erasures happen in
blocks of 32, 64, or 128 pages.

The number of these program-erase cycles of flash memory is limited
because the insulation between the substrate and floating gate is slightly
damaged each time [8, 280]. To extend the lifetime of an SSD, the controller
counts the number of P/E cycles each flash memory block and dynamically
remaps data to wear out all blocks equally fast. This process is called
wear-leveling and is automatically performed by the SSD controller.

2.4.2. Flash Translation Layer

Wear-leveling, garbage collection, and hiding the erase-before-write limita-
tion of flash memory for performance causes the data on an SSD to be
scattered [8, 13, 99, 126, 129]. This makes a persistent translation layer
necessary that translates the ordered logical page addresses, accessed by
the operating system, to the actual physical locations of the data on the

28

2.4. Solid-State Drives (SSDs)

CPU System RAM

NVMe SSD

FTL Storage
on DRAM

PCIe

(a) SSD with DRAM.

CPU System RAM

NVMe SSD
FTL Caching

on System RAM

PCIe

(b) SSD with HMB.

Figure 2.10.: NVMe SSDs with the host memory buffer (HMB) feature can use a
part of the system RAM to cache FTL entries.

NAND flash chips. This flash translation layer (FTL) is also stored in the
flash memory itself, as it must be persistent.

On every read and write to the SSD, the memory controller must access
the FTL to either get the current translation or update it. Therefore,
accesses to the FTL must be fast. If the SSD controller were to access
the FTL in the flash memory for every read, each read would incur an
additional read, basically halving the IOPS. Therefore, SSD controllers
use caches for their FTL. Budget SSDs use a small on-chip cache in the
SSD controller that caches a small subset of the FTL. High-end “pro”-level
SSDs use a separate DRAM chip next to the memory controller that is
large enough to hold the entire FTL while the SSD is turned on. When
starting, the SSD copies the whole FTL into the DRAM and only reads
it from there, greatly increasing random IOPS. Most mid-range NVMe
SSDs can use a feature called Host Memory Buffer as a trade-off between
cost and performance.

2.4.3. Host Memory Buffer (HMB)

With the HMB feature, NVMe SSDs can request main memory from the
operating system that they then use to cache parts of the FTL [185], as
shown in Figure 2.10. The operating system can then reserve memory
for exclusive access from the SSD. The SSD accesses the HMB through
direct memory accesses (DMA) over PCIe. Kim et al. [133] were the first
to analyze the HMB usage of SSDs and found that the HMB memory is
mainly used to cache parts of the FTL. We found the same to be true [115,
121], see Chapter 8 and 9. Caching parts of the FTL has a performance
advantage over accessing the flash memory for each FTL entry, but is

29

2. Background

slower than accessing an integrated DRAM. As the HMB is typically not
large enough to store the whole FTL, only parts are stored, and different
eviction policies and prefetching define which parts [121].

2.4.4. HMB Prevalence

In our HMB side channel paper [121], we used TechPowerUp’s SSD
database [54] containing 869 SSDs from 109 manufacturers to understand
the prevalence of the HMB feature in SSDs. Of these 869 SSDs, 694 use
the PCIe interface. PCIe is a requirement of the HMB as SATA does not
support DMA accesses. 37 % or 255 of all PCIe SSDs do not have DRAM.
Of these DRAM-less PCIe SSDs, 97.6 % or 249 support the HMB feature.
This shows that the feature is very prevalent in DRAM-less SSDs, as it
enables a performance gain at almost no cost.

30

3
State of the Art

This chapter discusses state-of-the-art DRAM disturbance attacks and
defenses, CPU undervolting, and side-channel attacks. We detail state-
of-the-art DRAM-disturbance exploit techniques and mitigations in Sec-
tion 3.1. Section 3.2, shows how CPU undervolting was used to attack
trusted-execution environments and its potentials. Finally, we provide an
overview of side-channel attacks in Section 3.3, ranging from contention
to storage side-channel attacks and cloud co-location detection.

31

3. State of the Art

3.1. DRAM Disturbance Attacks

In this section, we discuss state-of-the-art software-based DRAM distur-
bance attacks and defenses. Software-based DRAM disturbance attacks al-
low an attacker to flip bits in the DRAM by only accessing it from software.
There are two DRAM disturbance phenomena: Rowhammer [137] and
Rowpress [163]. Rowhammer was identified as a potential security issue by
Kim et al. [137] in 2014. Since then, countless different Rowhammer meth-
ods [53, 74, 105, 144, 206, 229], see Section 3.1.1, exploit techniques [21,
26, 37, 39, 52, 53, 75, 103, 119, 125, 144, 149, 213, 215, 249, 256, 275, 288],
see Section 3.1.3, and also possible defenses [10, 18, 27, 30, 32, 33, 38,
41, 45, 51, 63, 72, 76, 83, 87, 88, 100, 102, 109, 114, 117, 123, 131, 137,
145, 151, 171, 189, 196, 198, 210, 221, 223, 224, 225, 230, 238, 253, 257,
258, 276, 281, 284], see Section 3.1.4, were published and implemented.
Rowpress is another software-based DRAM disturbance attack that was
only discovered recently by Luo et al. [163] in 2023, see Section 3.1.2.

In this section, we show that although more than ten years have passed
since the publication of Rowhammer, the problem still exists to this
day. A countless number of defenses were repeatedly broken by novel
Rowhammer patterns and exploit techniques [39, 53, 74, 105, 144]. With
this thesis, we concur with others that a full mitigation of Rowhammer is
only possible with full integrity protection of all data in the DRAM [51,
220]. We argue that the underlying problem is that academics, as well as
DRAM manufacturers, try to mitigate Rowhammer without it being fully
understood yet [74, 144, 163, 188, 277]. Our work, CSI:Rowhammer [117]
(Chapter 5) shows that the performance overhead of adding integrity
protection to all data in the DRAM is negligible. Integrity protection, in
addition to mitigations targeting Rowhammer more directly, could solve
the problem of DRAM disturbance attacks once and for all. In our works
Presshammer [119] (Chapter 7) and HMB Rowhammer [115] (Chapter 8)
we further the understanding of DRAM disturbance attacks.

3.1.1. Rowhammer

Rowhammer allows an attacker to flip bits in DRAM by frequently access-
ing (hammering) one or multiple rows adjacent to the victim row [137].

32

3.1. DRAM Disturbance Attacks

+ + + +ON

-
-
-- - -

-
-

(a) Channel Inversion: When the word-
line is activated, electrons collect
at the channel to connect the ca-
pacitor with the bitline.

+ + + +OFF

-
-

-

(b) Electron Spreading: After the
wordline is deactivated, the elec-
trons are free to move around.

+ + + +OFF

-
-

-

(c) Electron Injection: Most electrons
move back into the closest capac-
itor, but some “leak” and are in-
jected into a neighboring one.

+ + +OFF

(d) Capacitor Discharge: Every in-
jected electron slightly discharges
the neighboring capacitor until the
stored bit flips.

Figure 3.1.: How the Rowhammer effect recombines charges in the victim capaci-
tor, flipping the stored bit [88, 137].

Root Cause. The underlying cause of Rowhammer is the shared sub-
strate in which multiple cells are embedded [88, 195, 219, 260, 278], as
we explained in Section 2.3.1. Figure 3.1 illustrates the physical cause of
the Rowhammer effect. When the wordline is on, the storage capacitor
is connected to the bitline, and electrons from the capacitor flow along
the transistor’s channel. After the wordline is turned off, the electrons
are no longer held to the transistor’s channel and spread out. Most are
injected back into the storage capacitor where they came from, as it is the
closest, but some electrons “leak” and are injected into other neighboring
storage capacitors. With each leaking electron, the charge in this storage
capacitor is depleted slightly. If the wordline is toggled often enough, the
charge depletes to a point below the threshold where the bit flips.

33

3. State of the Art

(a) Double-Sided (b) One-Location (c) Multi-Sided (d) Half-Double

Figure 3.2.: Four hammer patterns. Double-sided Rowhammer [229] sandwiches
the victim (blue) between two attacker rows (red). One-location
Rowhammer [74] accesses only a single row in a bank. Multi-sided
Rowhammer patterns [53, 105] access additional dummy rows (or-
ange) to evade TRR mitigations. Half-double Rowhammer [144]
provokes mitigative TRR accesses (green) around the victim row to
flip bits.

Hammer Patterns. Figure 3.2 shows four different hammer patterns.
The hammering patterns describe which rows in the DRAM an attacker
accesses. Initially, Kim et al. [137] only hammered by frequently accessing
multiple single rows in a DRAM bank, i.e., single-sided Rowhammer. In
2015, Seaborn et al. [229] showed that Rowhammer can induce more bit
flips if not any two rows are hammered but two rows sandwiching the
victim rows, i.e., double-sided Rowhammer.

One-location Rowhammer only accesses a single row of the DRAM and
still causes bit flips [74]. This is unexpected because the memory controller
usually keeps the row open in the row buffer, serving the data from
there. This behavior of a memory controller, keeping the row open as long
as possible, is called the open-row policy. However, memory controllers
can also work with a closed-row policy where they close a row after
each access [74]. This can have performance benefits on highly multi-
threaded systems, where subsequent accesses are unlikely to go to the
same DRAM row. In Presshammer [119] (Chapter 7), we show that one-
location Rowhammer also causes bit flips due to the Rowpress effect that
was not yet known when one-location Rowhammer was found.

DRAM implementing the target row refresh (TRR) mitigation, see Sec-
tion 3.1.4, is not vulnerable to single- and double-sided Rowhammer [53,
83]. To evade TRR, Frigo et al. [53] included decoy accesses to their
multi-sided Rowhammer pattern. These decoy accesses are synchronized
to refresh commands and can confuse certain TRR implementations to
protect the wrong victim rows. Additionally, they can also cause too many

34

3.1. DRAM Disturbance Attacks

potential victim rows, so that the DRAM is overwhelmed and cannot
refresh all of them in the time it has available during the periodic refreshes.
Their fuzzer was able to induce bit flips in 13 of 42 tested DDR4 modules.
With Blacksmith, Jattke et al. [105] describe the different decoy accesses
with a frequency, phase and amplitude and their fuzzer varies them to find
long and complex hammer patterns. Jattke et al. [105] were able to flip
bits in all of their 40 tested DDR4 modules. Gerlach et al. [61] reproduced
bit flips in 8 of 10 tested DDR4 modules using the Blacksmith fuzzer.

TRR can also be exploited as a confused deputy to aid Rowhammer
attacks. With Half-Double Rowhammer [144], we present a new physical
property of Rowhammer. When hammering one row further away from the
victim row (far aggressor), very infrequent accesses to the row neighboring
the victim row (near aggressors) are enough to “transport” the leaked
stray electrons to the victim row capacitors. This hammer pattern is shown
in Figure 3.2d. On DRAM that is protected with TRR, the accesses to
the near aggressor are caused by TRR, which tries to protect these rows
from the far aggressor. However, due to the half-double effect, these TRR
accesses cause the bit flips in the actual victim row. We were able to flip
bits on 5 out of 7 mobile devices with LPDDR4x DRAM [144].

3.1.2. Rowpress

Rowpress also allows an attacker to flip bits in DRAM. Instead of opening
and closing a row as quickly as possible, Rowpress keeps (presses) one or
multiple rows adjacent to the victim row open for as long as possible [163].
Rowpress is caused by the passing-gate effect and affects different cells
than Rowhammer [163]. Figure 3.3 shows how the passing-gate effect
causes bits to flip in the DRAM. Due to the physical layout of a modern
6F2 DRAM cell, not all gates on a wordline connect a storage node to a
bitline. This is shown in Figure 2.6b in Section 2.3. When a wordline is
activated, these so-called passing gates on this wordline attract electrons
from the storage node. The longer the wordline is active, the more electrons
are attracted. When the wordline is turned off, most electrons return to
the storage node they came from, but some “leak” further out into the
substrate to another capacitor. This reduces the charge in this neighboring
capacitor, flipping bits [88, 93].

Luo et al. [163] analyzed 164 DRAM chips using an FPGA platform and
showed that it is a common DRAM vulnerability across all three major

35

3. State of the Art

- - - - OFF

(a) Passing Gate Channel Inversion:
When a wordline is activated, elec-
trons from storage nodes are at-
tracted to passing gates.

- ON

-
-
-

(b) Electron Spreading: When the
wordline is deactivated again, the
electrons are free to move around.

- OFF

-
-
-

(c) Electron Injection: Most electrons
move back into the closest capac-
itor, but some “leak” and are in-
jected into the substrate.

- - - OFF

(d) The electrons injected into the sub-
strate are now missing in the ca-
pacitor, flipping the bit.

Figure 3.3.: How the Rowpress effect removes charges from the victim capacitor,
flipping the stored bit [88, 163].

DRAM manufacturers. Similar to Rowhammer, Rowpress is also more
effective if the victim row is sandwiched between two aggressor rows. To
cause Rowpress bit flips from software, Luo et al. [163] keep a row open as
long as possible by accessing up to all 128 cache lines within one row. They
were able to cause Rowpress bit flips in one Samsung DRAM DIMM from
2018. The DIMM we used in the PressHammer paper [119] (Chapter 7) is
also from 2017. This suggests that modern Rowhammer mitigations are
well equipped to also prevent Rowpress bit flips.

Recent work by Jattke et al. [104] used a DRAM interposer and a oscil-
loscope to analyze Rowpress on real systems in more detail. They found
that the pattern accessing all 128 cache lines within one row keeps the
row open for at most 292.95 ns, much less than allowed by the standard.

36

3.1. DRAM Disturbance Attacks

3.1.3. DRAM Disturbance Exploitation

From now on, we will use Rowhammer as a synonym for Rowhammer
and Rowpress, as the following concepts apply similarly to both DRAM
disturbance attacks. Rowhammer flips bits at seemingly random locations
in the DRAM. Apart from the different hammering patterns to get bit
flips, actually causing Rowhammer bit flips from unprivileged programs
and exploiting these bit flips is well-researched [21, 26, 35, 37, 39, 52, 53,
75, 103, 119, 125, 144, 149, 213, 215, 249, 256, 275, 288].

DRAM Addressing. Programs running on a CPU cannot directly
address specific rows in the DRAM. Two layers of indirection, i.e., map-
pings are between the address a program accesses and the row and bank
addressed in the DRAM [200]. The first indirection is virtual memory, as
described in Section 2.2.2, that maps the seemingly contiguous and private
virtual memory space to physical memory [98]. The second indirection
is the DRAM addressing functions, which map the physical addresses to
ranks, bank groups, banks, and rows, described in Section 2.3.2.

The virtual-to-physical address mapping is not readable by unprivileged
processes anymore after it was disabled to prevent the first Rowhammer
exploits [138]. Therefore, many different methods to get physically contigu-
ous memory were proposed [75, 144, 256]. Gruss et al. [75] were the first
to use 2 MB transparent huge pages. Web browsers automatically allocate
them for large arrays [75], and they can also be requested from Linux using
madvise on most systems [154, 247]. However, transparent huge pages are
not available on all systems, e.g., Android, and can easily be turned off on
systems where they are enabled by default [247]. Alternatively, Van der
Veen et al. [256] massaged Linux’s buddy allocator [69] to get predictable
physical page placement. Memory allocator massaging was also used by
multiple exploits afterwards [52, 149, 215]. Other exploits [52, 144] used
the fact that when allocating enough memory, chunks will be contiguous,
and use the bank conflict side channel to detect this contiguity.

Contiguous memory gives an attacker knowledge about additional physical
address bits above the page offset. These bits can then be used with the
DRAM addressing functions, which we explained in Section 2.3.2, of the
attacked CPU to address rows in specific banks [52, 144].

37

3. State of the Art

Virtual Mem. Physical Mem.

virt addr1

virt addr2

PTE1

PTE2

aggressor1

aggressor2

phys addr1
phys addr2

(a) Correct Mapping

Virtual Mem. Physical Mem.

virt addr1

virt addr2

PTE1

PTE2

aggressor1

aggressor2

phys addr2

(b) Successful Exploit

Figure 3.4.: The Rowhammer page table exploit. By hammering PTE1 using
aggr1 and aggr2 the PFN is changed to point to the physical address
of PTE2. Now the attacker has write access to PTE2 through its
virtual mapping vaddr1 and can access the whole physical memory.

Exploit Targets. Rowhammer can be used to attack a large variety
of systems. These attacks can be classified by their goal, e.g., privilege
escalation in the operating system or the browser, stealing of cryptographic
keys, or denial of service, and the target, e.g., Intel or ARM CPUs.

The first two Rowhammer exploits were presented by Seaborn et al. [229].
They flipped bits in machine code executed in the Chrome NaCl sandbox to
disable the jump target sanitization, so that they could jump to unaligned
targets, e.g., a syscall instruction hidden in a movabs instruction. The
second exploit they developed is the most used Rowhammer privilege
escalation exploit to this day [37, 39, 52, 53, 75, 119, 125, 144, 256, 288].
It uses Rowhammer to flip bits in the page-frame-number in a page-table
entry to gain write access to a page table, as shown in Figure 3.4. This
exploit can also be executed by hammering through implicit page-table
accesses [287, 288]. A similar technique was also demonstrated against
hypervisors [35, 275].

Rowhammer is also possible from JavaScript [26, 52, 75, 215]. A similar
approach to the page table exploit was used in browser sandbox escapes [26,
52, 215]. For this exploit, a fake array object is created, and a pointer
is hammered to point to this object. This fake array object can then be
modified to point everywhere in the browser’s memory. Tatar et al. [245]
and Lipp et al. [156] demonstrated Rowhammer attacks over the network.

38

3.1. DRAM Disturbance Attacks

Gruss et al. [74] were the first to flip bits in a binary to elevate privileges.
They identified 29 different offsets in the sudo binary that can be flipped
to break the password verification logic. They combined this technique
with one-location Rowhammer from within an SGX enclave for a stealth
attack.

Kwong et al. [149] shows that Rowhammer can also be used to directly
leak data, exploiting the data dependency of Rowhammer [137]. To-
bah et al. [249] used Rowhammer on kernel code to reenable Spectre
attacks. Rowhammer can also be used to steal cryptographic keys [21, 213],
also in post-quantum schemes [7, 180]. Jang et al. [103] and Gruss et al. [74]
exploit Rowhammer for denial of service attacks by halting SGX enclaves.
Recently, Jattke et al. [106] demonstrated that Rowhammer is also possible
from AMD CPUs, and Marazzi et al. [169] demonstrated Rowhammer on
RISC-V. The first exploit on ARM was already presented in 2016 [256]
using uncachable memory, followed by Rowhammer from the integrated
ARM GPU [52]. Weissmann et al. [269] performed a Rowhammer attack
from an FPGA through DMA. Qiao et al. [206] demonstrated Rowham-
mer using non-temporal instructions and Heckel et al. [84] increased the
hammer effectiveness by up to 830 with multithreaded Rowhammer using
the cmpsb and repe instructions.

In our work “An Analysis of HMB-based SSD Rowhammer” [115] (Chap-
ter 8), we analyzed whether SSDs using a host memory buffer, see Sec-
tion 2.4.3, can be used as a confused deputy to hammer the HMB in the
main memory. However, our results show that the HMB itself is integrity
protected, and bit flips are detected. Upon detection, all of our tested
SSDs freeze, leading to a denial of service or a data loss in the worst case.
Additionally, the SSD’s accesses to the HMB are not frequent enough to
induce bit flips even on highly susceptible DRAM.

3.1.4. Software-Only Defenses

Since the first publication about Rowhammer, attackers and defenders have
been constantly working to outsmart each other [74, 181]. Additionally,
the ever-shrinking node size exacerbates the problem with every new
DRAM generation [132]. While attackers are mostly academic researchers,
Rowhammer defenses were proposed by academia but also developed and
implemented by DRAM and CPU manufacturers [109]. Defenses can be
categorized into software-only defenses, which are easy to implement and

39

3. State of the Art

deploy, and defenses (partly) implemented in hardware, which are more
difficult to deploy but potentially more effective.

Especially in the first years of Rowhammer research, many software-only
defenses were proposed [10, 30, 41, 100, 145, 257]. As Rowhammer attacks
cause suspicious CPU cache usage, similar to CPU cache side-channel
attacks, cache side-channel detection methods were also proposed to detect
ongoing Rowhammer attacks [38, 76, 87, 100, 198, 284].

ANVIL by Aweke et al. [10] detects ongoing Rowhammer attacks using
cache hardware performance counters similarly to cache side-channel
detection works [38, 76, 87, 198, 284]. ANVIL reduces false positives by
only intervening if at least two rows on the same bank are hammered.
Machek [41] proposed counting the number of cache misses in the kernel
and halting the CPU until the next refresh if it exceeds a preconfigured
threshold. Irazoqui et al. [100] use static code analysis to detect instructions
often used in cache and Rowhammer attacks like clflush, non-temporal
moves, rdtsc, or fences. Brasser et al. [30] add guard rows around kernel
memory to increase the distance between potential aggressor and victim
rows. GuardION by Van der Veen et al. [257] is a mitigation against
their attack on Android ARM devices [256]. They put guard rows around
DMA memory requested using Android’s ION driver. ZebRAM [145] also
works by adding guard rows, however, between every row. It then uses all
these guard rows as an integrity-protected swap memory to not halve the
memory capacity.

Di et al. [45] present “Copy-on-Flip”, a defense that can be purely im-
plemented in software if the system uses ECC DRAM. This makes it
a software-only defense relying on a readily available hardware feature.
ECC DRAM is not enough to prevent a Rowhammer attack, as shown
by Cojocar et al. [39]. However, the exploit of Cojocar et al. [39] requires
a templating phase where it collects single-bit flips that are corrected
by ECC to combine these bit flips in the second step. Copy on flip [45]
prevents this by remapping pages whenever correctable bit flips happen.

3.1.5. Hardware-Based Defenses

Over the years, improving attacks have shown that software-only defenses
are insufficient to solve Rowhammer [74]. Therefore, many mitigations that
require hardware changes have been proposed and also implemented [18,
27, 32, 33, 51, 63, 72, 83, 88, 102, 109, 114, 117, 123, 131, 137, 151, 171,

40

3.1. DRAM Disturbance Attacks

189, 196, 210, 221, 223, 224, 225, 230, 238, 253, 258, 276, 281]. These
hardware-based defenses can be classified into defenses that prevent bit
flips and defenses that detect bit flips to correct them. Both methods have
disadvantages: While preventive defenses can become obsolete with new
attack methods, correcting detected bit flips becomes inefficient quickly
if bit flips are too frequent. We argue that combining both methods can
most efficiently prevent current and future Rowhammer attacks.

Defenses Preventing Bit Flips

This class of defenses tries to prevent bit flips by protecting potential
victim rows before their cells are discharged below the threshold [18, 27,
32, 88, 102, 110, 114, 134, 136, 137, 151, 168, 171, 189, 196, 209, 210,
221, 225, 230, 238, 253, 258, 271, 272, 276, 281]. We further classify these
defenses into three different methods of identifying potential victim rows
and by their actions after a potential victim row is identified.

Probabilistic Victim Row Identification. Already with the first
paper on Rowhammer, Kim et al. [137] proposed a number of potential
mitigations, the most prominent being probabilistic adjacent row activation
(PARA), now called probabilistic target row refresh (pTRR) [123]. Intel
has implemented pTRR in some of its CPUs since 2014 [123]. With pTRR,
whenever a row is accessed, its neighboring rows are refreshed with a low
probability. If the probability is chosen well, the performance overhead
is negligible, while Rowhammer bit flips become very unlikely. Similar
probabilistic mitigations were proposed by Son et al. [238], You et al. [281],
and Kim et al. [136].

Qureshi et al. [210] use only a single counter to count row activations and
probabilistically select which row is counted at each refresh. Jaleel et al.
[102] use a small number of counters per bank and do not use heuristics
to select which row is counted intentionally. Because of that, they claim
to be immune to specifically crafted access patterns that manage to break
policy-driven defenses [53, 105].

Counter-Based Victim Row Identification. DRAM manufacturers
and JEDEC acted rather quickly and added target row refresh (TRR)
to many later DDR4 DIMMs and as a required feature to the LPDDR4
standard [109]. TRR does not probabilistically refresh neighboring rows

41

3. State of the Art

but actually counts the accesses to rows and refreshes the neighbors if a
certain DIMM-specific threshold is reached [72, 83, 109, 112, 131].

However, to save die area and power consumption, these first TRR im-
plementations only counted a limited number of rows [53, 105]. With
complex access patterns, the sampler can be tricked to count the accesses
to decoy rows and not the actual aggressors [53, 105], as explained in
Section 3.1.1. Another issue is that the DRAM has only limited time
to perform preventive row refreshes. If more victim rows are hammered
than the DRAM can refresh, bit flips still happen, even if the DRAM
detected the victim rows in time [53, 168, 171, 253]. A third issue with
TRR, half-double Rowhammer, was presented by Kogler et al. [144] where
TRR actually aids the attacker to hammer from a greater distance, as
explained in Section 3.1.1. Half-double Rowhammer can be mitigated by
increasing the range of protected rows around a detected aggressor row [33,
83, 171, 189, 210, 223, 276].

A large body of works continuously improves the area-, performance- and
power-overhead of counter-based mitigations [18, 27, 88, 102, 134, 168,
171, 189, 253]. These works aim to make the mitigation cheaper and at
the same time more difficult to evade.

Hong et al. [88] propose a stochastic and approximate counting (DSAC)
algorithm that filters out the accesses to decoy rows that evaded prior
TRR implementations. However, DSAC was later broken by Qazi et al.
[205] due to the internal state of the used LFSR random number generator
being too small. Bostanci et al. [27] use a data structure called count-min
sketch to estimate the activation count of rows, requiring significantly
less area than having a counter per row. This design may overestimate
but never underestimates the activation count. Olgun et al. [189] make
the key observation that workloads usually access the same row ID in
multiple banks due to the DRAM addressing functions aiming for bank-
level parallelism, see Section 2.3.2. Therefore, they use the Misra-Gries
algorithm to track aggressor rows, not per bank but shared across all
banks.

Per Row Activation Counting (PRAC). Jedec recently added per-
row activation counting (PRAC) to the DDR5 standard [108, 222]. A
DRAM with PRAC contains a counter for every single row in each bank.
Bennett et al. [18] showed that this approach is viable by using a novel

42

3.1. DRAM Disturbance Attacks

DRAM mat design that does not add any performance overhead. Ben-
nett et al. [18] also use the already existing ALERTn signal to pause the
memory controller, called ALERT-Back-Off (ABO). This is required to
perform additional preventive refreshes that did not fit into the refresh
commands.

Canpolat et al. [33] are the first to perform a comprehensive study of the
PRAC feature as defined in the DDR5 standard [108]. They show that
due to the ABO signal, a crafted adversarial access pattern can hog up to
94 % of DRAM throughput and degrade system throughput by up to 95 %.
Woo et al. [271] and Qureshi et al. [209] both show that the initial design
proposed by Bennett et al. [18] is insecure, additionally to the potentially
high overhead found by Canpolat et al. [33]. Both works propose secure
designs with less performance overhead.

Other Victim Row Identification Methods. Apart from the designs
that track potential victim rows in the DRAM, some designs use other
methods inside the memory controller. Vig et al. [258] use a sliding window
mechanism to detect currently attacked victim rows and add them to an
integrity tree to protect the data in them. Seyedzadeh et al. [230] use
adaptive trees of counters, Lee et al. [151] time window counters, Park et al.
[196] content addressable memory [110], Yaglikci et al. [276] bloom-filters
and Joardar et al. [114] machine learning.

Preventive Refresh. Most proposed defenses refresh victim rows after
they exceed the activation threshold. To have enough time to perform all
required refreshes, the DDR5 standard adds two mechanisms [108]. The
first one is Refresh Management (RFM). The memory controller keeps
track of the number of activations sent to the DRAM banks and gives
a bank additional time for refreshes by sending RFM commands if the
activations exceed a threshold. The second mechanism is the ALERT-
Back-Off (ABO) signal that the DRAM can send to the memory controller
to force it to send RFM commands. Jattke et al. [104] recently found that
neither Intel nor AMD CPUs send RFM commands even if the DRAM
requires them to mitigate Rowhammer effectively.

Recent works also looked at ways to make preventive refreshes more
efficient. Rega [171] proposes a DRAM design with an additional set of
buffering sense amplifiers that are only used for data transfers. These free
up the other sense amplifiers to perform refreshes in parallel. Tugrul et al.

43

3. State of the Art

[253] study real DRAM chips and find that the refresh latency tRAS can be
decreased by 64 % while requiring only 0.54 % additional refreshes [253].

Row Remapping. Some defenses do not refresh potential victim rows
but also remap them to another location in the DRAM bank to shield them
from future attacks. Saileshwar et al. [221] detect aggressor rows similar
to Park et al. [196], however, they do not refresh the victims but swap
the aggressor rows with other randomly selected rows. This is to prevent
attacks like Half-Double [144]. Saxena et al. [225] propose a very similar
mitigation, remapping the aggressor rows to a quarantine area. Woo et al.
[272] find an attack pattern that breaks the defense by Saileshwar et al.
[221] in under a day and propose a more secure design themselves.

Data Integrity-Based Defenses

These defenses aim to detect data integrity violations and then correct
the bit flips whenever possible. Multiple mitigations have been proposed
using message authentication codes or hashes to ensure the integrity of
data in the DRAM [51, 91, 220]. However, all of them have shortcomings
regarding the threat model of a Rowhammer attack. Ivec [91] and Syn-
ergy [220] protect against local attackers with capabilities exceeding those
of a Rowhammer attacker. Their integrity trees reduce the performance
significantly. Safeguard [51] can only correct a single bit flip.

In our work PT-Guard [224], we propose a mitigation to protect page
tables from bit flips because they are an easy attack target for privilege
escalation [35, 39, 52, 53, 75, 119, 125, 144, 256, 275, 288]. PT-Guard [224]
combines unused bits in groups of 8 page-table entries to store a 96-bit
MAC for data integrity protection.

In CSI:Rowhammer [117] (Chapter 5), we protect all data against integrity
violations using a MAC, albeit with a small memory overhead similar
to ECC DRAM. This approach guarantees that no bit flips, whatever
their reason is, go undetected and can be exploited. The only remaining
possible attack on a system with CSI:Rowhammer would be a denial of
service. We show that the performance overhead is small, and correction
of multiple bit flips is realistic as we perform the correction in the kernel.
This correction of multiple bit flips in the kernel enables techniques like
reloading corrupted cached data from disk. However, CSI:Rowhammer
does not have Chipkill-like correction capabilities [43] for all data, similar

44

3.2. CPU Undervolting

to current SECDED ECC. We argue, that the possibility to correct bit
flips spread over multiple DRAM chips is more important if Rowhammer
is a threat. Future work could focus on further improving the trade-off
between performance and Chipkill-like correction capabilities of data
integrity-based defenses.

Currently, no data integrity-based defense has the correction capabilities
to efficiently correct the high number of bit flips in modern high-density
DRAM if they were otherwise unprotected. Data integrity-based defenses
must be paired with defenses preventing bit flips. On the other hand,
defenses preventing bit flips should also be paired with data integrity-
based defenses to protect against novel attack methods [144], incomplete
defense implementations [104], or other causes of bit flips [43].

3.2. CPU Undervolting

As described in Section 2.1.2, digital circuits are typically supplied with a
slightly higher voltage than the minimum required. This so-called voltage
guardband guarantees the circuit’s correct functionality even when chang-
ing die temperature, aging, or supply voltage droops [70, 197]. Reducing
this voltage guardband saves energy and can even increase performance
on modern CPUs [70, 116]. This is due to the fact that the CPU clock rate
is typically limited by the thermal design power (TDP). The TDP defines
the maximum power the CPU is allowed to draw for a prolonged time, or
the maximum CPU die temperature directly. With a reduced power con-
sumption due to a lower supply voltage, the CPU can clock higher before
reaching the TDP. Not surprisingly, given these benefits, the undervolting
potential of CPUs and resulting power savings and performance increases
were thoroughly researched [68, 70, 124, 146, 193, 194].

However, CPU undervolting can also be used to attack trusted-execution
environments [15, 130, 142, 179, 208, 243]. On many CPUs, the multipli-
cation and AES circuits are among the circuits with the highest voltage
requirement. If this requirement is not met, the calculations can produce
faulty results. This can be exploited by undervolting CPUs to precisely the
voltage level where the CPU continues running normally, but these instruc-
tions fail [130, 179, 208, 243]. Tang et al. [243] attack ARM TrustZone by
overclocking the CPU, which has the same effect as undervolting. Qiu et al.
[208] manipulate the voltage to attack ARM TrustZone. Murdock et al.

45

3. State of the Art

[179] and Kenjar et al. [130] exploit Intel SGX enclaves by undervolting to
steal cryptographic keys or induce memory safety into bug-free enclaves.

Barenghi et al. [17] analyze different countermeasures to protect cryp-
tographic algorithms against fault attacks. Their framework can auto-
matically add instruction duplication, instruction triplication, and parity
checking for stored values to programs. Kogler et al. [142] presented a tar-
geted countermeasure against CPU undervolting attacks against trusted
execution environments. They analyzed a range of CPUs and confirmed
that integer multiplication is the first faulting instruction on most CPUs
at different frequencies. An enclave can therefore use multiplications where
the correct results are known as trap instructions to detect whether the
CPU is undervolted.

A number of works also try to enable stable and secure undervolting [11,
12, 172], including our work SUIT [116] (Chapter 6). Bacha et al. [11, 12]
utilize on-chip ECC of Intel Itanium CPUs to guide their undervolting. On
Intel Itanium CPUs, the cache and register file are the first components
that become erroneous when undervolting. Intel Itanium CPUs can also
report corrected ECC errors in the cache and register file to the operating
system. This allows Bacha et al. [11, 12] to keep the voltage at exactly a
level where no error occurs. Unfortunately, errors in multiplication circuits
cannot easily be detected. Koutsovasilis et al. [147] undervolt the CPU
depending on the running workload based on the performance monitor
counter changes it causes. Therefore, Maroudas et al. [172] additionally
also differentiate between kernel and user space, based on their observation
that user space code can be undervolted more than kernel code. They do,
however, require voltage changes on every kernel entry and exit. Ernst et al.
[49] proposed a hardware solution to enable secure undervolting. Their
design Razor, uses slightly skewed clock edges and shadow circuitry to
detect when critical paths are close to violating their timing constraints.
Razor would add considerable complexity to modern chip designs and
is not used in practice. In our work SUIT [116] (Chapter 6), we trap
potentially faulting instructions when undervolting to only execute them
while the CPU is supplied with a high enough voltage. The performance
overhead of our design is smaller than the potential performance gain
from undervolting, enabling a higher performance at a lower CPU power
consumption.

46

3.3. Side-Channel Attacks

3.3. Side-Channel Attacks

In this thesis, we will only focus on software-based side channels. Software-
based side channels do not require physical access to the device that is
attacked. The first software-based side-channel attack by Kocher [139]
leaked keys from Diffie-Hellman, RSA, and DSS via timing. Percival [199]
was the first to perform a Prime+Probe attack on CPU caches, attacking
an RSA algorithm. Osvik et al. [191] performed the first Prime+Probe
attack on AES T-tables and coined the term Prime+Probe. Bernstein [19]
timed the execution of AES T-tables over the network with many different
messages to leak the key. Since then, the very high spatial and temporal
resolution of CPU cache side channels has been exploited for a variety
of attacks that became more generic compared to attacks on specific
cryptographic implementations [76, 77, 89, 176, 202, 204, 211, 279, 290].

Recently, with CPU caches being very well researched, more research
has focused on other parts of a computer system like, execution units
and schedulers [1, 4, 22, 57, 58, 218, 265], the memory bus [90, 273, 274],
operating system data structures [111, 164, 165], DRAM row conflicts [200,
228], the page cache [73], software-based power and frequency scaling [143,
157, 159, 207, 263, 264], device sensors [174, 186, 231], CPU fans [79],
performance counters [59, 78], the PCIe bus [65, 234, 241, 248], in-memory
computing architectures [48, 266], FGPAs [65, 203, 250, 251], interrupt
detection [40, 212, 283], GPUs [3, 47, 66, 113, 183, 242, 262, 268], and
random number generation logic [50]. However, while storage has been
identified as a potential source for side- and covert channels long before
the first cache side channels [90, 128, 150, 162, 226, 252], the research on
commercial off-the-shelf SSDs is sparse.

Covert Channels. Side channels typically have a specific target, e.g.,
cryptographic keys, with an attack on this target evaluated in the work.
However, comparing their capabilities became a non-trivial task given
the wide range of side channels. One way to compare side channels is by
their channel capacity, the rate at which information can be transmitted
over the channel. To measure the channel capacity, a covert channel is
well suited as the sender and receiver are cooperating. Most side-channel
papers implement and benchmark a covert channel [4, 22, 50, 57, 58, 65,
73, 76, 81, 90, 111, 165, 175, 176, 200, 204, 211, 212, 228, 234, 250, 251, 265,
273, 274, 283]. Covert channels are also used in transient-execution attacks
to transmit the transiently leaked data to the outside world [140, 158].

47

3. State of the Art

Covert channels were also already researched long before the first software-
based side-channel attacks. Lampson [150] was the first to recognize the
difficulty of confining a program on a system with a shared operating
system and shared hardware. This was followed by further research on
covert channels and their mitigation [90, 128, 162, 226, 252]. However,
these works focused on special “secure systems” as, for example, defined by
the Trusted Computer System Evaluation Criteria [44] and not commercial
off-the-shelf systems, which are the target of most recent side-channel
research.

Contention Side Channels. The first covert channels by Lampson
and others [90, 128, 150, 162, 226, 252] exploited contention on a shared
resource, e.g., the hard drive. Apart from these secure systems [44], con-
tention was mainly a concern for the system’s performance. With the
emergence of multiprocessor systems, contention on the shared memory
or last-level cache became a concern [173, 214, 254]. Contention was also
researched in databases [2, 24].

If contention can be focused on a small subset of a system, e.g., execution
ports or schedulers, powerful attacks are possible from the leaking of
encryption keys [1, 4, 22, 58] and remote attacks from JavaScript [57,
218]. Contention on the network has also been shown to leak private
user information [55, 62, 246]. Memory bus contention [273, 274], as well
as HDD contention [155], has been used for covert communication. The
additional contention caused by RowHammer mitigation-induced memory
latency differences has been used for covert communication and website
fingerprinting [29]. PCIe contention has been shown to enable a variety of
attacks [65, 234, 241, 248] if PCIe switches or PCIe platform controller
hubs are used to share a link, which is not generally the case for SSDs. As
a part of this thesis [120] (Chapter 10), we show that contention on SSDs
can be used for covert communication and allows to fingerprint websites
visited by the victim with very high accuracy.

Storage Side Channels. Shared storage has been identified very early
as a potential source for side channels [150]. Karger et al. [128] exploit
the optimizations of hard disks’ arm movements to build a covert channel.
Hard disks were again attacked more recently, first, by Lipinski et al. [155],
who presented a contention-based covert channel with up to 0.1 bit/s.
Biedermann et al. [23] measured the electromagnetic emissions of a hard

48

3.3. Side-Channel Attacks

drive using a smartphone to perform operating system and application
fingerprinting. Finally, Guri et al. [80] measured the acoustic emissions
of a hard drive to build a covert channel. Guri et al. [80] highlight that
SSDs mitigate this covert channel as they do not emit noises. Chen et al.
[34] also suggest that SSDs would mitigate certain timing side channels
that are present in HDDs.

Trochatos et al. [250, 251] focused on smart SSDs that include a user-
programmable FPGA to enable near-storage compute [152]. They use them
to build a covert channel between users using the smart SSD consecutively
and between those using it simultaneously. Lui et al. [161] analyze the
(now discontinued) Intel Optane persistent memory for side channels and
reverse engineer the internal cache to develop four new attacks: a covert
channel, a keystroke-timing attack, a fully remote covert channel, and a
note board attack. Gruss et al. [73] exploit the operating system’s page
cache that caches recently accessed storage pages to build a 7 kB/s to
273 kB/s covert channel, an ASLR break on Windows 10, a UI redressing
attack, and a keystroke-timing attack. Jiang et al. [111] exploit the fsync
syscall on the file system that writes dirty data back to storage to build a
20 kbit/s covert channel.

However, even though the storage subsystem has long been known to be
a source of side-channel leakage and research exists on HDDs [23, 80, 128,
155], smart SSDs [250, 251], and Intel Optane persistent memory [161], this
thesis is the first to analyze the side-channel leakage of regular off-the-shelf
SSDs. In our work “Secret Spilling Drive” [120] (Chapter 10), we show
that contention on SSDs can be used for covert communication and allows
to fingerprint websites with very high accuracy.

Cloud Co-Location. In cloud environments, multiple tenants are run-
ning on the same shared hardware. Many of them store confidential data
of themselves or their customers. Therefore, cloud environments have long
been a target of side-channel research. A large body of works studied
attacks [20, 176, 240, 274, 285, 286] but also their mitigation [135, 160,
284]. For most of these attacks to work, the attacker must be co-located
with the victim on the same physical hardware. This motivated a special-
ized branch of research on cloud co-location [94, 95, 166, 217, 289], with
cloud providers constantly eliminating known channels for co-location
detection [95]. Ristenpart et al. [217] were the first to show that targeted
co-location is feasible in the AWS cloud. Inci et al. [95] use the last-level

49

3. State of the Art

cache as a covert channel to detect co-location and mount an attack on
RSA. Makrani et al. [166] massage the resource provisioning systems
with their attack, called Cloak & Co-locate, to get targeted co-location.
Zhao et al. [289] achieve co-location in Google Cloud’s Function-as-a-
Service environment and steal secret ECDSA nonce bits using a cache
side channel [290].

In our work “Not So Secure TSC” [118] (Chapter 11), we show that the
SecureTSC feature of AMD’s confidential computing platform SEV SNP
enables very fast and low-overhead co-location detection.

50

4
Conclusion

In this thesis, we presented novel Rowhammer and side-channel attacks.
Motivated by these attacks, we explored how hardware-software co-designs
can be effective and efficient mitigations against software-based fault
attacks. We conclude this thesis with three key insights:

DRAM disturbance attacks like Rowhammer are still not fully understood,
motivating the need for principled mitigations. After more than 10 years,
Rowhammer is still not perfectly mitigated because of an incomplete
understanding of DRAM disturbance effects [74, 144] and insufficient
mitigations [105, 106, 125]. We demonstrated that phenomena like one-
location Rowhammer can exist for years before being fully understood [119]
(Chapter 7). We also extended Rowhammer research to new hardware
and showed that SSDs using the main memory can also hammer it [115]
(Chapter 8). It is likely that future research will uncover further previ-
ously unknown links between existing DRAM disturbance effects. Future
research must also continuously assess the Rowhammer risk in new threat
models that include peripheral hardware similar to SSDs. Every PCIe
revision doubles the throughput, doubling the potential hammer rate of
DMA accesses to the main memory. The same danger comes from novel
hardware accelerators like neural processing units that access the DRAM
directly. When compute-in-memory architectures become widespread, their
susceptibility to Rowhammer and also their potential to be used in an
attack will be a relevant research question [28, 182, 282]. With a con-
tinuously increasing understanding of DRAM disturbance attacks and
novel threat models, mitigations focusing on the currently existing attacks
are unlikely to guarantee sustained security. Only principled mitigations
that can guarantee data integrity regardless of the specific attack and
simultaneously provide strong correction capabilities can sustainedly solve
the problem [117] (Chapter 5).

51

4. Conclusion

Principled mitigations can be inexpensive and even increase efficiency. To
prevent hardware faults under all circumstances, manufacturers add guard-
bands to properties like timings and supply voltages. By employing princi-
pled mitigations against hardware faults, the guardbands can be reduced
as they are not longer solely responsible for preventing faults. The guaran-
tee to detect all data corruption in the DRAM of CSI:Rowhammer [117]
(Chapter 5) could also be used to optimize the refresh rate of DRAM
dynamically. In the future, the memory controller could reduce the re-
fresh rate to find a sweet spot between the energy “wasted” on bit flip
correction and the energy savings from the reduced refresh rate. As the
reduced refresh rate also increases the performance of the DRAM, this
could lead to a faster and more energy-efficient system. With increasing
hardware-software system complexity, it is likely that future research will
increase the role of software in the handling and correction of bit flips,
for example, by performing bit flip correction in user space or by taking
knowledge about the DRAM’s structure and properties into account to
reduce the search space significantly. In our work SUIT [116] (Chapter 6),
we showed that the CPU voltage can be significantly decreased if the CPU
guarantees that potentially faulting instructions are not executed with
this lower voltage. Overall, SUIT can decrease the power consumption
of the CPU while even increasing the system’s performance. To improve
CPU efficiency further, with more fine-grained voltage control based on
more factors than just specific instructions, we need further research to
understand the CPU’s susceptibility to faults and crashes in low-voltage
scenarios. Additionally, the operating system could also interact with the
CPU to inform the CPU about required voltage levels in the near future.
This could significantly reduce the overhead from CPU voltage change
delays, similar to cache prefetchers.

For new hardware, known classes of problems, like side channels, are often
not considered in the design phase, leaving the new hardware vulnerable.
Even though SSDs are widely used in almost all computers, they have not
yet been studied as a source of side channels. We close this research gap and
perform the first side-channel analyses on modern commodity off-the-shelf
SSDs, presenting two novel software-based timing side-channel attacks on
SSDs. The first attack is a cache timing side channel that provides leakage
with high spatial resolution in combination with a software interface [121]
(Chapter 9). The second side channel leaks SSD contention with high
temporal resolution [120] (Chapter 10). We performed a large study of
SSDs’ susceptibility to this contention side channel and showed that all
tested SSDs were vulnerable. These works show that single components

52

like SSDs can be the source of multiple side channels, and it is likely that
future work will uncover many more, given their complexity and wide use.
Similar to potential DRAM disturbance attacks, this also extends to other
hardware components where research is sparse, either because they were
newly introduced or received little attention from the academic community
until now. While storage contention has already been identified as a source
for side channels for a very long time [150], we are the first that showed
that it also impacts high performance NVMe SSDs. The high performance
actually enables more fine-grained attacks, such as fingerprinting the
subtle signals from websites being opened on the machine with very high
accuracy. As the performance is continuously increasing, it is likely that
these attacks will get worse in the future. In our work on AMD’s Secure
TSC [118] (Chapter 11), we showed another example of a new feature that
was introduced without taking side channels into account. The Secure TSC
timer allows an attacker to detect the co-location of virtual machine guests.
Without a principled approach to consider known classes of problems,
in particular, side-channel leakage will continue to be introduced in new
hardware components and features.

53

References

[1] Onur Aciicmez and Jean-Pierre Seifert. Cheap Hardware Paral-
lelism Implies Cheap Security. In: FDTC. 2007 (pp. 47, 48).

[2] Rakesh Agrawal, Michael J Carey, and Miron Livny. Concurrency
Control Performance Modeling: Alternatives and Implications. In:
ACM Transactions on Database Systems (TODS) (1987) (p. 48).

[3] Jaeguk Ahn, Cheolgyu Jin, Jiho Kim, Minsoo Rhu, Yunsi Fei, David
Kaeli, and John Kim. Trident: A Hybrid Correlation-Collision GPU
Cache Timing Attack for AES Key Recovery. In: HPCA. 2021 (pp. 5,
47).

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. In: S&P. 2019 (pp. 5, 47, 48).

[5] AMD. AMD64 Architecture Programmer’s Manual. 2023 (p. 10).
[6] AMD. AMD64 Architecture Programmer’s Manual. 2024 (p. 21).
[7] Samy Amer, Yingchen Wang, Hunter Kippen, Thinh Dang, Daniel

Genkin, Andrew Kwong, Alexander Nelson, and Arkady Yerukhi-
movich. PQ-Hammer: End-to-end Key Recovery Attacks on Post-
Quantum Cryptography Using Rowhammer. In: S&P. 2025 (p. 39).

[8] Seiichi Aritome. NAND Flash Memory Technologies. John Wiley
& Sons, 2015 (pp. 27, 28).

[9] ARM. ARM A64 Instruction Set Architecture. Sept. 2018 (p. 20).
[10] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao,

Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd Austin.
ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks. In: ASPLOS (2016) (pp. 3, 32, 40).

[11] Anys Bacha and Radu Teodorescu. Dynamic Reduction of Voltage
Margins by Leveraging On-chip ECC in Itanium II Processors. In:
ISCA. 2013 (pp. 4, 7, 46).

[12] Anys Bacha and Radu Teodorescu. Using ECC Feedback to Guide
Voltage Speculation in Low-Voltage Processors. In: MICRO. 2014
(pp. 4, 7, 46).

[13] Amir Ban. Flash file system. US Patent 5,404,485. 1995 (p. 28).

55

References

[14] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall,
and Claire Whelan. The Sorcerer’s Apprentice Guide to Fault
Attacks. In: Proceedings of the IEEE (2006) (p. 3).

[15] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Ger-
ardo Pelosi. Low Voltage Fault Attacks on the RSA Cryptosystem.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC). 2009 (pp. 3, 7, 45).

[16] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo, and Gerardo
Pelosi. Software-only Reverse Engineering of Physical DRAM Map-
pings for Rowhammer Attacks. In: International Verification and
Security Workshop (IVSW). 2018 (p. 25).

[17] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. Countermeasures Against Fault Attacks
on Software Implemented AES: Effectiveness and Cost. In: Work-
shop on Embedded Systems Security. 2010 (p. 46).

[18] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojo-
car. Panopticon: A Complete In-DRAM Rowhammer Mitigation.
DRAMSec. 2021 (pp. 32, 40–43).

[19] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (pp. 4, 47).

[20] Johann Betz, Dirk Westhoff, and Günter Müller. Survey on covert
channels in virtual machines and cloud computing. In: Transactions
on Emerging Telecommunications Technologies (2016) (pp. 10, 49).

[21] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (pp. 32, 37, 39).

[22] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neug-
schwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer,
and Anil Kurmus. SMoTherSpectre: Exploiting Speculative Execu-
tion through Port Contention. In: CCS. 2019 (pp. 5, 47, 48).

[23] Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer.
Hard Drive Side-Channel Attacks using Smartphone Magnetic Field
Sensors. In: FC. 2015 (pp. 4, 5, 9, 48, 49).

[24] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. The Convoy
Phenomenon. In: ACM SIGOPS Operating Systems Review (1979)
(p. 48).

56

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[25] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults. In:
EUROCRYPT. 1997 (p. 3).

[26] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In: S&P. 2016 (pp. 32, 37, 38).

[27] F Nisa Bostanci, ISmail Emir Yüksel, Ataberk Olgun, Konstantinos
Kanellopoulos, Yahya Can Tuğrul, A Giray Yağliçi, Mohammad
Sadrosadati, and Onur Mutlu. CoMeT: Count-Min-Sketch-Based
Row Tracking to Mitigate RowHammer at Low Cost. In: HPCA.
2024 (pp. 32, 40–42).

[28] F. Nisa Bostanci, Konstantinos Kanellopoulos, Ataberk Olgun,
A. Giray Yaglikci, Ismail Emir Yuksel, Nika Mansouri Ghiasi, Zulal
Bingol, Mohammad Sadrosadati, and Onur Mutlu. Revisiting Main
Memory-Based Covert and Side Channel Attacks in the Context
of Processing-in-Memory. In: arXiv:2404.11284 (2025) (p. 51).

[29] F Bostancı, Oğuzhan Canpolat, Ataberk Olgun, İsmail Emir Yüksel,
Konstantinos Kanellopoulos, Mohammad Sadrosadati, A Giray
Yağlıkçı, and Onur Mutlu. Understanding and Mitigating Side
and Covert Channel Vulnerabilities Introduced by RowHammer
Defenses. In: arXiv:2503.17891 (2025) (p. 48).

[30] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. CAn’t Touch This: Software-only Miti-
gation against Rowhammer Attacks targeting Kernel Memory. In:
USENIX Security. 2017 (pp. 3, 32, 40).

[31] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
Power Analysis with a Leakage Model. In: CHES. 2004 (p. 4).

[32] Oğuzhan Canpolat, A Giray Yağlıkçı, Ataberk Olgun, Ismail Emir
Yuksel, Yahya Can Tuğrul, Konstantinos Kanellopoulos, Oğuz
Ergin, and Onur Mutlu. BreakHammer: Enhancing RowHammer
Mitigations by Carefully Throttling Suspect Threads. In: MICRO.
2024 (pp. 32, 40, 41).

[33] Oğuzhan Canpolat, A Giray Yağlıkçı, Geraldo F Oliveira, Ataberk
Olgun, Oğuz Ergin, and Onur Mutlu. Understanding the Security
Benefits and Overheads of Emerging Industry Solutions to DRAM
Read Disturbance. In: DRAMSec (2024) (pp. 32, 40, 42, 43).

57

References

[34] Ang Chen, W Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh
Thi Xuan Phan, Micah Sherr, and Wenchao Zhou. Detecting Covert
Timing Channels with Time-Deterministic Replay. In: OSDI. 2014
(pp. 9, 49).

[35] Wei Chen, Zhi Zhang, Xin Zhang, Qingni Shen, Yuval Yarom,
Daniel Genkin, Chen Yan, and Zhe Wang. HyperHammer: Breaking
Free from KVM-Enforced Isolation. In: ASPLOS. 2025 (pp. 37, 38,
44).

[36] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D Garcia. VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage
scaling interface. In: USENIX Security. 2020 (pp. 4, 7).

[37] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical
Kernel Isolation. In: arXiv:1802.07060 (2018) (pp. 22, 32, 37, 38).

[38] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time de-
tection of cache-based side-channel attacks using Hardware Perfor-
mance Counters. In: Cryptology ePrint Archive, Report 2015/1034
(2015) (pp. 32, 40).

[39] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against Rowhammer Attacks. In: S&P. 2019 (pp. 3, 4, 11,
22, 32, 37, 38, 40, 44).

[40] Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan.
There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-
Learning-Assisted Side-Channel Attack. In: ISCA. 2022 (p. 47).

[41] Jonathan Corbet. Defending against Rowhammer in the kernel.
Oct. 2016. url: https://lwn.net/Articles/704920/ (pp. 3, 32,
40).

[42] Nikunj A Dadhania. [PATCH v7 00/16] Add Secure TSC support
for SNP guests. 2023. url: https://lore.kernel.org/all/2023
1220151358.2147066-1-nikunj@amd.com/ (p. 10).

[43] Timothy J. Dell. A White Paper on the Benefits of Chipkill-Correct
ECC for PC Server Main Memory. Tech. rep. IBM Microelectronics,
1997 (pp. 44, 45).

[44] Department of Defense. Trusted Computer System Evaluation
Criteria (TCSEC). 1983 (p. 48).

58

https://lwn.net/Articles/704920/
https://lore.kernel.org/all/20231220151358.2147066-1-nikunj@amd.com/
https://lore.kernel.org/all/20231220151358.2147066-1-nikunj@amd.com/

[45] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuf-
frida. Copy-on-Flip: Hardening ECC Memory Against Rowhammer
Attacks. In: NDSS. 2023 (pp. 3, 32, 40).

[46] Cambridge Dictionary, ed. “leaky”. Cambridge University Press,
2024 (p. 3).

[47] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh,
Andres Marquez, and Kevin Barker. Leaky Buddies: Cross-
Component Covert Channels on Integrated CPU-GPU Systems.
In: ISCA. 2021 (pp. 5, 47).

[48] Sina Sayyah Ensan, Karthikeyan Nagarajan, Mohammad Nasim
Imtiaz Khan, and Swaroop Ghosh. SCARE: Side Channel Attack
on In-Memory Computing for Reverse Engineering. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems (2021)
(p. 47).

[49] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev
Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin,
Krisztian Flautner, et al. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In: MICRO. 2003 (p. 46).

[50] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels
Through Random Number Generator: Mechanisms, Capacity Esti-
mation and Mitigations. In: CCS. 2016 (pp. 5, 47).

[51] Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and Moinuddin K
Qureshi. SafeGuard: Reducing the Security Risk from Row-Hammer
via Low-Cost Integrity Protection. In: HPCA. 2022 (pp. 32, 40,
44).

[52] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (pp. 3, 22, 32, 37–39, 44).

[53] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In: S&P. 2020 (pp. 3, 4, 11, 22, 25, 32, 34, 37, 38, 41, 42,
44).

[54] Ferraz Gabriel. SSD Database. https://www.techpowerup.com
/ssd-specs/. 2025 (p. 30).

59

https://www.techpowerup.com/ssd-specs/
https://www.techpowerup.com/ssd-specs/

References

[55] Stefan Gast, Roland Czerny, Jonas Juffinger, Fabian Rauscher,
Simone Franza, and Daniel Gruss. SnailLoad: Exploiting Remote
Network Latency Measurements without JavaScript. In: USENIX
Security. 2024 (pp. 5, 12, 48).

[56] Stefan Gast, Sebastian Daniel Felix, Alexander Steinmaurer, Jonas
Juffinger, and Daniel Gruss. Real-World Study of the Security
of Educational Test Systems. In: Workshop on Operating Systems
and Virtualization Security. 2025 (pp. 5, 12, 13).

[57] Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, An-
dreas Kogler, and Daniel Gruss. Remote Scheduler Contention
Attacks. In: FC. 2024 (pp. 5, 12, 47, 48).

[58] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel.
In: S&P. 2023 (pp. 5, 10, 12, 47, 48).

[59] Stefan Gast, Hannes Weissteiner, Robin Leander Schröder, and
Daniel Gruss. CounterSEVeillance: Performance-Counter Attacks
on AMD SEV-SNP. In: NDSS. 2025 (p. 47).

[60] Lukas Gerlach, Simon Schwarz, Nicolas Faroß, and Michael Schwarz.
Efficient and generic microarchitectural hash-function recovery. In:
S&P. 2024 (p. 25).

[61] Lukas Gerlach, Fabian Thomas, Robert Pietsch, and Michael
Schwarz. A Rowhammer Reproduction Study Using the Black-
smith Fuzzer. In: ESORICS. 2023 (p. 35).

[62] Jim Gettys. Bufferbloat: Dark buffers in the internet. In: IEEE
Internet Computing 15.3 (2011), pp. 96–96 (p. 48).

[63] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. ARMOR: A
Run-time Memory Hot-Row Detector. 2015. url: http://apt.cs
.manchester.ac.uk/projects/ARMOR/RowHammer (pp. 32, 40).

[64] Swaroop Ghosh and Kaushik Roy. Parameter Variation Tolerance
and Error Resiliency: New Design Paradigm for the Nanoscale Era.
In: Proceedings of the IEEE (2010) (p. 7).

[65] Ilias Giechaskiel, Shanquan Tian, and Jakub Szefer. Cross-VM
Covert- and Side-Channel Attacks in Cloud FPGAs. In: ACM
Transactions on Reconfigurable Technology and Systems (2022)
(pp. 47, 48).

60

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer

[66] Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher,
Andreas Kogler, Daniel De Almeida Braga, and Daniel Gruss.
Generic and Automated Drive-by GPU Cache Attacks from the
Browser. In: AsiaCCS. 2024 (pp. 5, 47).

[67] Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner, Paul
Gollob, Jonas Juffiger, and Daniel Gruss. Fast and Efficient Secure
L1 Caches for SMT. In: ARES. 2025 (pp. 5, 13).

[68] Dimitris Gizopoulos, George Papadimitriou, Athanasios Chatzidim-
itriou, Vijay Janapa Reddi, Behzad Salami, Osman S Unsal, Adrian
Cristal Kestelman, and Jingwen Leng. Modern hardware margins:
CPUs, GPUs, FPGAs recent system-level studies. In: Interna-
tional Symposium on On-Line Testing and Robust System Design
(IOLTS). 2019 (pp. 4, 7, 17, 18, 45).

[69] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall Upper Saddle River, 2004 (p. 37).

[70] Corey Gough, Ian Steiner, Winston Saunders, Corey Gough, Ian
Steiner, and Winston Saunders. CPU Power Management. In: En-
ergy Efficient Servers: Blueprints for Data Center Optimization
(2015) (pp. 7, 45).

[71] Sudhakar Govindavajhala and Andrew W Appel. Using Memory
Errors to Attack a Virtual Machine. In: S&P. 2003 (p. 3).

[72] Zvika Greenfield and Tomer Levy. Throttling support for row-
hammer counters. US Patent 9251885. 2014 (pp. 32, 40, 42).

[73] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (pp. 47, 49).

[74] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(pp. 3, 4, 7, 8, 32, 34, 39, 40, 51).

[75] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 22, 32, 37, 38, 44).

[76] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (pp. 5, 32, 40, 47).

61

References

[77] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (pp. 5, 47).

[78] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk
Sunar. PerfWeb: How to violate web privacy with hardware perfor-
mance events. In: ESORICS. 2017 (p. 47).

[79] Mordechai Guri. Exfiltrating data from air-gapped computers via
ViBrAtIoNs. In: Future Generation Computer Systems (2021)
(p. 47).

[80] Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval
Elovici. Acoustic Data Exfiltration from Speakerless Air-Gapped
Computers via Covert Hard-Drive Noise (‘DiskFiltration’). In: ES-
ORICS. 2017 (pp. 4, 5, 9, 49).

[81] Jawad Haj-Yahya, Lois Orosa, Jeremie S Kim, Juan Gómez Luna,
A Giray Yağlıkçı, Mohammed Alser, Ivan Puddu, and Onur Mutlu.
IChannels: Exploiting Current Management Mechanisms to Create
Covert Channels in Modern Processors. In: ISCA. 2021 (p. 47).

[82] Sarah Harris and David Harris. Digital Design and Computer
Architecture. Morgan Kaufmann, 2015 (pp. 4, 16–18, 21).

[83] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van
der Veen, Kaveh Razavi, and Onur Mutlu. Uncovering In-DRAM
RowHammer Protection Mechanisms:A New Methodology, Custom
RowHammer Patterns, and Implications. In: MICRO. 2021 (pp. 3,
32, 34, 40, 42).

[84] Martin Heckel and Florian Adamsky. Flipper: Rowhammer on
Steroids. In: uASC. 2025 (p. 39).

[85] Martin Heckel and Florian Adamsky. Reverse-Engineering Bank
Addressing Functions on AMD CPUs. In: DRAMSec Workshop.
2023 (p. 25).

[86] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. Reliable
Reverse Engineering of Intel DRAM Addressing Using Performance
Counters. In: Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE. 2020 (p. 25).

[87] Nishad Herath and Anders Fogh. These are Not Your Grand Dad-
dys CPU Performance Counters – CPU Hardware Performance
Counters for Security. In: Black Hat USA. 2015 (pp. 32, 40).

62

[88] Seungki Hong, Dongha Kim, Jaehyung Lee, Reum Oh, Changsik
Yoo, Sangjoon Hwang, and Jooyoung Lee. DSAC: Low-Cost
Rowhammer Mitigation Using In-DRAM Stochastic and Approxi-
mate Counting Algorithm. In: arXiv:2302.03591 (2023) (pp. 23, 24,
32, 33, 35, 36, 40–42).

[89] Gal Horowitz, Eyal Ronen, and Yuval Yarom. Spec-o-Scope: Cache
Probing at Cache Speed. In: CCS. 2024 (pp. 5, 47).

[90] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. In:
Journal of Computer Security (1992) (pp. 47, 48).

[91] Ruirui Huang and G. Edward Suh. IVEC: Off-Chip Memory In-
tegrity Protection for Both Security and Reliability. In: ISCA. 2010
(p. 44).

[92] Vincent Huard, Souhir Mhira, A Barclais, X Lecocq, F Raugi,
M Cantournet, and Alain Bravaix. Managing electrical reliability
in consumer systems for improved energy efficiency. In: IEEE
International Reliability Physics Symposium (IRPS). 2018 (pp. 18,
19).

[93] Jisung Im, Hansol Kim, Jinsu Kim, Seungmin Woo, Taeseong Kwon,
Young Jun Yoon, Jong-Ho Bae, and Sung Yun Woo. Analysis of
Row Hammer and Passing Gate Effect in DRAM Cells by BCAT
Structural Design. In: IEEE Silicon Nanoelectronics Workshop
(SNW). 2024 (p. 35).

[94] Mehmet Sinan Inci, Berk Gulmezoglu, Thomas Eisenbarth, and
Berk Sunar. Co-location detection on the cloud. In: COSADE. 2016
(pp. 10, 49).

[95] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud. In: Cryptology ePrint
Archive, Report 2015/898 (2015) (p. 49).

[96] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2023 (pp. 21, 25).

[97] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture. 2016 (pp. 20, 21).

[98] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 2024 (pp. 20,
37).

63

References

[99] Intel. Understanding the Flash Translation Layer (FTL) Specifica-
tion. 1998 (p. 28).

[100] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT:
Stopping Microarchitectural Attacks Before Execution. In: Cryp-
tology ePrint Archive, Report 2016/1196 (2017) (pp. 32, 40).

[101] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Cross-VM Side Channels and Their Use to Extract Private
Keys. In: Big Data and Cloud Computing. 2014 (p. 10).

[102] Aamer Jaleel, Gururaj Saileshwar, Stephen W. Keckler, and Moin-
uddin Qureshi. PrIDE: Achieving Secure Rowhammer Mitigation
with Low-Cost In-DRAM Trackers. In: ISCA. 2024 (pp. 32, 40–42).

[103] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (pp. 32, 37, 39).

[104] Patrick Jattke, Michele Marazzi, Flavien Solt, Max Wipfli, and Ste-
fan Gloor Kaveh Razavi. MCSEE: Evaluating Advanced Rowham-
mer Attacks and Defenses via Automated DRAM Traffic Analysis.
In: Usenix Security. 2025 (pp. 36, 43, 45).

[105] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. BLACKSMITH: Rowhammering in the Frequency
Domain. In: S&P. 2021 (pp. 3, 4, 11, 32, 34, 35, 41, 42, 51).

[106] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej
Bölcskei, and Kaveh Razavi. ZenHammer: Rowhammer Attacks on
AMD Zen-based Platforms. In: USENIX Security. 2024 (pp. 25, 39,
51).

[107] JEDEC Solid State Technology Association. DDR4 SDRAM Stan-
dard. 2021. url: https://www.jedec.org/standards-document
s/docs/jesd79-4a (pp. 24, 25).

[108] JEDEC Solid State Technology Association. DDR5 SDRAM Stan-
dard. 2024. url: https://www.jedec.org/standards-document
s/docs/jesd79-5c01 (pp. 25, 26, 42, 43).

[109] JEDEC Solid State Technology Association. Low Power Double
Data Rate 4. 2017. url: http://www.jedec.org/standards-doc
uments/docs/jesd209-4b (pp. 32, 39–42).

64

https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://www.jedec.org/standards-documents/docs/jesd79-5c01
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b

[110] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and
David Blaauw. A 28 nm Configurable Memory (TCAM/BCAM/S-
RAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory.
In: IEEE Journal of Solid-State Circuits (2016) (pp. 41, 43).

[111] Qisheng Jiang and Chundong Wang. Sync+Sync: A Covert Channel
Built on fsync with Storage. In: USENIX Security. 2024 (pp. 5, 47,
49).

[112] Yichen Jiang, Huifeng Zhu, Haoqi Shan, Xiaolong Guo, Xuan
Zhang, and Yier Jin. TRRScope: Understanding Target Row Re-
fresh Mechanism for Modern DDR Protection. In: HOST. 2021
(p. 42).

[113] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key
recovery timing attack on a GPU. In: HPCA. 2016 (pp. 5, 47).

[114] Biresh Kumar Joardar, Tyler K Bletsch, and Krishnendu
Chakrabarty. Machine Learning-Based Rowhammer Mitigation.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022) (pp. 32, 40, 41, 43).

[115] Jonas Juffinger. An Analysis of HMB-based SSD Rowhammer. In:
uASC. 2025 (pp. 5, 6, 8, 29, 32, 39, 51).

[116] Jonas Juffinger, Stepan Kalinin, Daniel Gruss, and Frank Mueller.
SUIT: Secure Undervolting with Instruction Traps. In: ASPLOS.
2024 (pp. 5–7, 45, 46, 52).

[117] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. CSI: Rowhammer - Cryptographic
Security and Integrity against Rowhammer. In: S&P. 2023 (pp. 5–7,
32, 40, 44, 51, 52).

[118] Jonas Juffinger, Sudheendra Raghav Neela, and Daniel Gruss. Not
So Secure TSC. In: ACNS. 2025 (pp. 5, 6, 9, 10, 50, 53).

[119] Jonas Juffinger, Sudheendra Raghav Neela, Martin Heckel, Lukas
Schwarz, Florian Adamsky, and Daniel Gruss. Presshammer:
Rowhammer and Rowpress without Physical Address Information.
In: DIMVA. 2024 (pp. 5–8, 22, 32, 34, 36–38, 44, 51).

[120] Jonas Juffinger, Fabian Rauscher, Giuseppe La Manna, and Daniel
Gruss. Secret Spilling Drive: Leaking User Behavior through SSD
Contention. In: NDSS. 2025 (pp. 5, 6, 9, 48, 49, 52).

65

References

[121] Jonas Juffinger, Hannes Weissteiner, Thomas Steinbauer, and
Daniel Gruss. The HMB Timing Side Channel: Exploiting the
SSD’s Host Memory Buffer. In: DIMVA. 2025 (pp. 5, 6, 8, 9, 29,
30, 52).

[122] Matthias Jung, Carl C Rheinländer, Christian Weis, and Norbert
Wehn. Reverse engineering of DRAMs: Row hammer with crosshair.
In: International Symposium on Memory Systems. 2016 (p. 25).

[123] Marcin Kaczmarski. Thoughts on Intel Xeon E5-2600 v2 Product
Family Performance Optimisation – component selection guidelines.
Infobazy 2014. Aug. 2014. url: https://web.archive.org/web
/20240418012923/http://infobazy.gda.pl/2014/pliki/prez
entacje/d2s2e4-Kaczmarski-Optymalna.pdf (pp. 32, 40, 41).

[124] Manolis Kaliorakis, Athanasios Chatzidimitriou, George Papadim-
itriou, and Dimitris Gizopoulos. Statistical analysis of multicore
CPUs operation in scaled voltage conditions. In: IEEE Computer
Architecture Letters (2018) (pp. 4, 7, 45).

[125] Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef
Tobah, Daniel Genkin, Andrew Kwong, and Yuval Yarom. Sledge-
Hammer: Amplifying Rowhammer via Bank-level Parallelism. In:
USENIX Security. 2024 (pp. 3, 11, 22, 32, 37, 38, 44, 51).

[126] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee.
A Superblock-based Flash Translation Layer for NAND Flash
Memory. In: International Conference on Embedded Software. 2006
(p. 28).

[127] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. 2016 (p. 10).

[128] Paul A Karger and John C Wray. Storage Channels in Disk Arm
Optimization. In: S&P. 1991 (pp. 5, 47–49).

[129] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A Flash-
Memory Based File System. In: USENIX. 1995 (p. 28).

[130] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: USENIX Security. 2020 (pp. 4, 7, 45, 46).

[131] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. Archi-
tectural support for mitigating row hammering in DRAM memories.
In: IEEE Computer Architecture Letters 14 (2015) (pp. 32, 40, 42).

66

https://web.archive.org/web/20240418012923/http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
https://web.archive.org/web/20240418012923/http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
https://web.archive.org/web/20240418012923/http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

[132] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting RowHam-
mer: An Experimental Analysis of Modern DRAM Devices and
Mitigation Techniques. In: ISCA. 2020 (p. 39).

[133] Kyusik Kim and Taeseok Kim. HMB in DRAM-less NVMe SSDs:
Their usage and effects on performance. In: PloS one (2020) (p. 29).

[134] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh,
Namhoon Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn.
Mithril: Cooperative Row Hammer Protection on Commodity
DRAM Leveraging Managed Refresh. In: HPCA. 2022 (pp. 41,
42).

[135] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealth-
Mem: system-level protection against cache-based side channel
attacks in the cloud. In: USENIX Security. 2012 (p. 49).

[136] Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong,
Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi,
Sanga Hyun, Mankeun Kang, et al. A 1.1V 16Gb DDR5 DRAM
with Probabilistic-Aggressor Tracking, Refresh-Management Func-
tionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and
Core-Bias Modulation for Security and Reliability Enhancement.
In: International Solid-State Circuits Conference (ISSCC). IEEE.
2023 (p. 41).

[137] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. In: ISCA. 2014 (pp. 3, 8,
24, 32–34, 39–41).

[138] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Addresses to
Non-Privileged Userspace. 2015. url: https://git.kernel.org
/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a
b676b7d6fbf4b294bf198fb27ade5b0e865c7ce (p. 37).

[139] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (pp. 4, 5, 47).

[140] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (p. 47).

67

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

References

[141] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In: CRYPTO. 1999 (p. 4).

[142] Andreas Kogler, Daniel Gruss, and Michael Schwarz. Minefield: A
Software-only Protection for SGX Enclaves against DVFS Attacks.
In: USENIX Security. 2022 (pp. 45, 46).

[143] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Mar-
tin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels. In: USENIX Security. 2023 (pp. 5, 11, 47).

[144] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
Half-Double: Hammering From the Next Row Over. In: USENIX
Security. 2022 (pp. 3–5, 11, 22, 32, 34, 35, 37, 38, 42, 44, 45, 51).

[145] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis
Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
ZebRAM: Comprehensive and Compatible Software Protection
Against Rowhammer Attacks. In: USENIX OSDI. 2018 (pp. 3, 32,
40).

[146] Panos Koutsovasilis, Christos D Antonopoulos, Nikolaos Bellas,
Spyros Lalis, George Papadimitriou, Athanasios Chatzidimitriou,
and Dimitris Gizopoulos. The Impact of CPU Voltage Margins on
Power-Constrained Execution. In: IEEE Transactions on Sustain-
able Computing (2020) (pp. 4, 7, 45).

[147] Panos Koutsovasilis, Konstantinos Parasyris, Christos D
Antonopoulos, Nikolaos Bellas, and Spyros Lalis. Dynamic un-
dervolting to improve energy efficiency on multicore x86 cpus. In:
IEEE Transactions on Parallel and Distributed Systems (2020)
(pp. 4, 7, 46).

[148] A Anand Kumar. Fundamentals of Digital Circuits. 2016 (pp. 7,
16).

[149] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In:
S&P. 2020 (pp. 32, 37, 39).

[150] Butler W Lampson. A note on the confinement problem. In: Com-
munications of the ACM (1973) (pp. 6, 47, 48, 53).

68

[151] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung
Ho Ahn. TWiCe: preventing row-hammering by exploiting time
window counters. In: ISCA. 2019 (pp. 32, 40, 41, 43).

[152] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krish-
namoorthy, Xiaodong Zhao, and Yang Seok Ki. SmartSSD: FPGA
Accelerated Near-Storage Data Analytics on SSD. In: IEEE Com-
puter Architecture Letters (2020) (p. 49).

[153] Lanny L Lewyn, Trond Ytterdal, Carsten Wulff, and Kenneth
Martin. Analog Circuit Design in Nanoscale CMOS Technologies.
In: Proceedings of the IEEE (2009) (p. 7).

[154] Linux. madvise(2) — Linux manual page.
https://man7.org/linux/man-pages/man2/madvise.2.html.
2025 (p. 37).

[155] Bartosz Lipinski, Wojciech Mazurczyk, and Krzysztof Szczypiorski.
Improving Hard Disk Contention-based Covert Channel in Cloud
Computing Environment. In: S&P Workshops. 2014 (pp. 5, 9, 48,
49).

[156] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: SILM
Workshop. 2020 (pp. 3, 38).

[157] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(pp. 4, 5, 11, 47).

[158] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security. 2018 (p. 47).

[159] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency Throttling Side-Channel Attack. In: CCS. 2022 (pp. 5,
47).

[160] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. CATalyst: Defeating Last-Level
Cache Side Channel Attacks in Cloud Computing. In: HPCA. 2016
(p. 49).

69

References

[161] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler,
Daniel Gruss, and Samira Khan. Side-Channel Attacks on Optane
Persistent Memory. In: USENIX Security. 2023 (pp. 6, 49).

[162] Keith Loepere. Resolving covert channels within a B2 class se-
cure system. In: ACM SIGOPS Operating Systems Review (1985)
(pp. 47, 48).

[163] Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya
Can Tuğrul, Steve Rhyner, Meryem Banu Cavlak, Joël Lindegger,
Mohammad Sadrosadati, and Onur Mutlu. RowPress: Amplifying
Read Disturbance in Modern DRAM Chips. In: ISCA. 2023 (pp. 4,
8, 24, 32, 35, 36).

[164] Lukas Maar, Stefan Gast, Martin Unterguggenberger, Mathias
Oberhuber, and Stefan Mangard. SLUBStick: Arbitrary Memory
Writes through Practical Software Cross-Cache Attacks within the
Linux Kernel. In: USENIX Security. 2024 (pp. 5, 47).

[165] Lukas Maar, Jonas Juffinger, Thomas Steinbauer, Daniel Gruss,
and Stefan Mangard. KernelSnitch: Side-Channel Attacks on Kernel
Data Structures. In: NDSS. 2025 (pp. 5, 12, 47).

[166] Hosein Mohammadi Makrani, Hossein Sayadi, Najmeh Nazari,
Khaled N Khasawneh, Avesta Sasan, Setareh Rafatirad, and
Houman Homayoun. Cloak & Co-locate: Adversarial Railroad-
ing of Resource Sharing-based Attacks on the Cloud. In: Secure
and Private Execution Environment Design (SEED). 2021 (pp. 49,
50).

[167] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumb-
hare, Ghaleb Abdulla, and Barry Rountree. An empirical survey
of performance and energy efficiency variation on Intel processors.
In: International Workshop on Energy Efficient Supercomputing.
2017 (p. 7).

[168] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi.
PROTRR: Principled yet Optimal In-DRAM Target Row Refresh.
In: S&P. 2022 (pp. 3, 41, 42).

[169] Michele Marazzi and Kaveh Razavi. RISC-H: Rowhammer Attacks
on RISC-V. In: DRAMSec Workshop. 2024 (pp. 3, 39).

[170] Michele Marazzi, Tristan Sachsenweger, Flavien Solt, Peng Zeng,
Kubo Takashi, Maksym Yarema, and Kaveh Razavi. HiFi-DRAM:
Enabling High-fidelity DRAM Research by Uncovering Sense Am-
plifiers with IC Imaging. In: ISCA. 2024 (pp. 23, 26).

70

[171] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi,
and Kaveh Razavi. REGA: Scalable Rowhammer Mitigation with
Refresh-Generating Activations. In: S&P. 2023 (pp. 3, 32, 40–43).

[172] Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Chris-
tos D Antonopoulos. Exploring the Potential of Context-Aware
Dynamic CPU Undervolting. In: ACM International Conference
on Computing Frontiers. 2021 (pp. 4, 7, 46).

[173] Marsan, Balbo, Conte, and Gregoretti. Modeling Bus Contention
and Memory Interference in a Multiprocessor System. In: IEEE
Transactions on Computers (1983) (p. 48).

[174] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann,
Jakub Szefer, and Stefan Katzenbeisser. MagneticSpy: Exploiting
Magnetometer in Mobile Devices for Website and Application
Fingerprinting. In: ACM Workshop on Privacy in the Electronic
Society. 2019 (pp. 5, 47).

[175] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (p. 47).

[176] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 5, 10, 47, 49).

[177] Mozilla. HTTP caching — MDN. Dec. 2024. url: https://devel
oper.mozilla.org/en-US/docs/Web/HTTP/Caching (p. 9).

[178] David Mulnix. Intel Xeon Processor Scalable Family Technical
Overview. https://www.intel.com/content/www/us/en/devel
oper/articles/technical/xeon-processor-scalable-family
-technical-overview.html. 2022 (p. 21).

[179] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (pp. 3, 4,
7, 17, 45, 46).

[180] Koksal Mus, Saad Islam, and Berk Sunar. QuantumHammer: A
Practical Hybrid Attack on the LUOV Signature Scheme. In: CCS.
2020 (p. 39).

71

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

References

[181] Onur Mutlu, Ataberk Olgun, and A Giray Yağlıkcı. Fundamentally
Understanding and Solving RowHammer. In: Asia and South Pacific
Design Automation Conference. 2023 (p. 39).

[182] Onur Mutlu, Ataberk Olgun, and İsmail Emir Yüksel. Memory-
Centric Computing: Solving Computing’s Memory Problem. In:
International Memory Workshop (IMW). 2025 (p. 51).

[183] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael
Abu-Ghazaleh. Rendered Insecure: GPU Side Channel Attacks are
Practical. In: CCS. 2018 (pp. 5, 47).

[184] Northland Locksmith. Safe lock manipulation. https://web.arc
hive.org/web/20161222161226/https://northlandlocksmith
.com/2016/12/09/safe-lock-manipulation/. 2016 (p. 4).

[185] NVM Express, Inc. NVM Express, rev 1.2.1. 2016 (pp. 8, 29).
[186] Mathias Oberhuber, Martin Unterguggenberger, Lukas Maar, An-

dreas Kogler, and Stefan Mangard. Power-Related Side-Channel
Attacks using the Android Sensor Framework. In: NDSS. 2025
(pp. 5, 47).

[187] Vojin G Oklobdzija, Vladimir M Stojanovic, Dejan M Markovic, and
Nikola M Nedovic. Digital System Clocking: High-Performance and
Low-Power Aspects. Wiley-IEEE Press, 2005. isbn: 9780471274476
(p. 18).

[188] Ataberk Olgun, F. Nisa Bostanci, Ismail Emir Yuksel, Oguzhan
Canpolat, Haocong Luo, Geraldo F. Oliveira, A. Giray Yaglikci,
Minesh Patel, and Onur Mutlu. Variable Read Disturbance: An
Experimental Analysis of Temporal Variation in DRAM Read
Disturbance. In: HPCA. 2025 (pp. 4, 32).

[189] Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir
Yuksel, Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Ger-
aldo F Oliveira, and Onur Mutlu. ABACuS: All-Bank Activation
Counters for Scalable and Low Overhead RowHammer Mitigation.
In: USENIX Security. 2024 (pp. 32, 41, 42).

[190] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Ol-
gun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim,
and Onur Mutlu. A Deeper Look into RowHammer’s Sensitivities:
Experimental Analysis of Real DRAM Chips and Implications on
Future Attacks and Defenses. In: MICRO. 2021 (p. 3).

72

https://web.archive.org/web/20161222161226/https://northlandlocksmith.com/2016/12/09/safe-lock-manipulation/
https://web.archive.org/web/20161222161226/https://northlandlocksmith.com/2016/12/09/safe-lock-manipulation/
https://web.archive.org/web/20161222161226/https://northlandlocksmith.com/2016/12/09/safe-lock-manipulation/

[191] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 4,
5, 47).

[192] George Papadimitriou, Athanasios Chatzidimitriou, and Dimitris
Gizopoulos. Adaptive Voltage/Frequency Scaling and Core Alloca-
tion for Balanced Energy and Performance on Multicore CPUs. In:
HPCA. 2019 (p. 7).

[193] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidim-
itriou, Dimitris Gizopoulos, Peter Lawthers, and Shidhartha Das.
Harnessing Voltage Margins for Energy Efficiency in Multicore
CPUs. In: MICRO. 2017 (pp. 4, 7, 45).

[194] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidim-
itriou, Charalampos Magdalinos, and Dimitris Gizopoulos. Voltage
margins identification on commercial x86-64 multicore micropro-
cessors. In: IEEE Symposium on On-Line Testing (IOLTS). 2017
(pp. 4, 7, 45).

[195] Kyungbae Park, Chulseung Lim, Donghyuk Yun, and Sanghyeon
Baeg. Experiments and root cause analysis for active-precharge
hammering fault in DDR3 SDRAM under 3× nm technology. In:
Microelectronics Reliability (2016) (p. 33).

[196] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung
Ho Ahn, and Jae W Lee. Graphene: Strong yet Lightweight Row
Hammer Protection. In: MICRO. 2020 (pp. 32, 41, 43, 44).

[197] Michael K Patterson. The Effect of Data Center Temperature on
Energy Efficiency. In: Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems. 2008 (pp. 7,
45).

[198] Matthias Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESSoS. 2016 (pp. 32, 40).

[199] Colin Percival. Cache Missing for Fun and Profit. In: BSDCan.
2005 (pp. 4, 47).

[200] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In: USENIX Security. 2016 (pp. 25, 26, 37,
47).

73

References

[201] Florian Pfarr, Thomas Buckel, and Axel Winkelmann. Cloud Com-
puting Data Protection – A Literature Review and Analysis. In:
HICSS. 2014 (p. 10).

[202] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Ver-
bauwhede. ShowTime: Amplifying Arbitrary CPU Timing Side
Channels. In: AsiaCCS. 2023 (pp. 5, 47).

[203] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Double
Trouble: Combined Heterogeneous Attacks on Non-Inclusive Cache
Hierarchies. In: USENIX Security. 2022 (p. 47).

[204] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In: CCS. 2021 (pp. 5, 47).

[205] Salman Qazi and Daniel Moghimi. SoothSayer: Bypassing DSAC
Mitigation by Predicting Counter Replacement. In: DRAMSec.
2024 (p. 42).

[206] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer
Attacks. In: HOST. 2016 (pp. 32, 39).

[207] Yi Qin and Chuan Yue. Website Fingerprinting by Power Estima-
tion Based Side-Channel Attacks on Android 7. In: TrustCom/Big-
DataSE. 2018 (p. 47).

[208] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies. In: CCS. 2019 (pp. 3, 4,
7, 45).

[209] Moinuddin Qureshi and Salman Qazi. MOAT: Securely Mitigating
Rowhammer with Per-Row Activation Counters. In: ASPLOS. 2025
(pp. 41, 43).

[210] Moinuddin Qureshi, Salman Qazi, and Aamer Jaleel. MINT: Se-
curely Mitigating Rowhammer with a Minimalist In-DRAM Tracker.
In: MICRO. 2024 (pp. 32, 41, 42).

[211] Fabian Rauscher, Carina Fiedler, Andreas Kogler, and Daniel
Gruss. A Systematic Evaluation of Novel and Existing Cache Side
Channels. In: NDSS. 2025 (pp. 5, 47).

[212] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel
Gruss. IdleLeak: Exploiting Idle State Side Effects for Information
Leakage. In: NDSS. 2024 (pp. 5, 11, 47).

74

[213] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle
in the Software Stack. In: USENIX Security. 2016 (pp. 32, 37, 39).

[214] Randall Rettberg and Robert Thomas. Contention is no obstacle to
shared-memory multiprocessing. In: Communications of the ACM
(1986) (p. 48).

[215] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos,
Cristiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized
Many-sided Rowhammer Attacks From JavaScript. In: USENIX
Security. 2021 (pp. 3, 32, 37, 38).

[216] Finn de Ridder, Patrick Jattke, and Kaveh Razavi. Posthammer:
Pervasive Browser-based Rowhammer Attacks with Postponed
Refresh Commands. In: USENIX Security. 2025 (p. 3).

[217] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 49).

[218] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi
Oren. Port Contention Goes Portable: Port Contention Side Chan-
nels in Web Browsers. In: AsiaCCS. 2022 (pp. 47, 48).

[219] Seong-Wan Ryu, Kyungkyu Min, Jungho Shin, Heimi Kwon,
Donghoon Nam, Taekyung Oh, Tae-Su Jang, Minsoo Yoo, Yongtaik
Kim, and Sungjoo Hong. Overcoming the Reliability Limitation in
the Ultimately Scaled DRAM Using Silicon Migration Technique
by Hydrogen Annealing. In: International Electron Devices Meeting
(IEDM). 2017 (p. 33).

[220] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani,
Wendy Elsasser, and Moinuddin K Qureshi. SYNERGY: Rethinking
Secure-Memory Design for Error-Correcting Memories. In: HPCA.
2018 (pp. 32, 44).

[221] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant
J Nair. Randomized Row-Swap: Mitigating Row Hammer by Break-
ing Spatial Correlation between Aggressor and Victim Rows. In:
ASPLOS. 2022 (pp. 32, 41, 44).

[222] Stefan Saroiu. DDR5 Spec Update Has All It Needs to End
Rowhammer: Will It? Apr. 2024. url: https://web.archive
. org / web /20240628014749 / https : / / stefan . t8k2 . com/ rh
/PRAC/index.html (p. 42).

75

https://web.archive.org/web/20240628014749/https://stefan.t8k2.com/rh/PRAC/index.html
https://web.archive.org/web/20240628014749/https://stefan.t8k2.com/rh/PRAC/index.html
https://web.archive.org/web/20240628014749/https://stefan.t8k2.com/rh/PRAC/index.html

References

[223] Anish Saxena, Aamer Jaleel, and Moinuddin Qureshi. ImPress:
Securing DRAM Against Data-Disturbance Errors via Implicit
Row-Press Mitigation. In: MICRO. 2024 (pp. 32, 41, 42).

[224] Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas Kogler,
Daniel Gruss, and Moinuddin Qureshi. PT-Guard: Integrity-
Protected Page Tables to Defend Against Breakthrough Rowham-
mer Attacks. In: DSN. 2023 (pp. 5, 11, 32, 41, 44).

[225] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin
Qureshi. AQUA: Scalable Rowhammer Mitigation by Quarantining
Aggressor Rows at Runtime. In: MICRO. 2022 (pp. 32, 41, 44).

[226] Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid.
Program Confinement in KVM/370. In: ACM National Conference.
1977 (pp. 47, 48).

[227] Christian Schlünder, Stefano Aresu, Georg Georgakos, Werner
Kanert, Hans Reisinger, Karl Hofmann, and Wolfgang Gustin.
HCI vs. BTI?-Neither one’s out. In: IEEE International Reliability
Physics Symposium (IRPS). 2012 (p. 19).

[228] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(p. 47).

[229] Mark Seaborn and Thomas Dullien. Exploiting the DRAM
Rowhammer bug to gain kernel privileges. In: Black Hat USA.
2015 (pp. 3, 11, 32, 34, 38).

[230] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem.
Mitigating Wordline Crosstalk using Adaptive Trees of Counters.
In: ISCA. 2018 (pp. 32, 41, 43).

[231] Carlton Shepherd, Jan Kalbantner, Benjamin Semal, and Kon-
stantinos Markantonakis. A Side-channel Analysis of Sensor Mul-
tiplexing for Covert Channels and Application Fingerprinting on
Mobile Devices. In: arXiv:2110.06363 (2021) (pp. 5, 47).

[232] Anand Shimpi. Intel Iris Pro 5200 Graphics Review: Core i7-
4950HQ Tested. June 2013. url: https://www.anandtech.co
m/show/6993/intel-iris-pro-5200-graphics-review-core-
i74950hq-tested/3 (p. 21).

76

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

[233] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website Fin-
gerprinting Through The Cache Occupancy Channel. In: USENIX
Security. 2019 (p. 5).

[234] Mert Side, Fan Yao, and Zhenkai Zhang. LockedDown: Exploiting
Contention on Host-GPU PCIe Bus for Fun and Profit. In: Euro
S&P. 2022 (pp. 47, 48).

[235] SN Singh. Basic Electrical Engineering. PHI Learning Pvt. Ltd.,
2010 (p. 18).

[236] Sergei P Skorobogatov and Ross J Anderson. Optical Fault In-
duction Attacks. In: International Workshop on Cryptographic
Hardware and Embedded Systems. 2002 (p. 3).

[237] Alan Jay Smith. Design of CPU Cache Memories. Computer Science
Division, University of California, 1987 (p. 20).

[238] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo.
Making DRAM Stronger Against Row Hammering. In: Design
Automation Conference (DAC). 2017 (pp. 32, 41).

[239] Mary-Jane Sule, Maozhen Li, and Gareth Taylor. Trust Modeling
in Cloud Computing. In: Symposium on Service-Oriented System
Engineering (SOSE). 2016 (p. 10).

[240] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Mi-
croarchitectural Minefields: 4K-aliasing Covert Channel and Multi-
tenant Detection in IaaS Clouds. In: NDSS. 2018 (pp. 10, 49).

[241] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. Invisible
Probe: Timing Attacks with PCIe Congestion Side-Channel. In:
S&P. 2021 (pp. 5, 47, 48).

[242] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel
Genkin, and Yuval Yarom. Hot Pixels: Frequency, Power, and Tem-
perature Attacks on GPUs and ARM SoCs. In: USENIX Security.
2023 (pp. 5, 47).

[243] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In: USENIX Security. 2017 (pp. 3, 4, 7, 45).

[244] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Defeating Software Mitigations Against Rowhammer: A Surgical
Precision Hammer. In: RAID. 2018 (pp. 3, 25).

77

References

[245] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer:
Rowhammer Attacks over the Network and Defenses. In: USENIX
ATC. 2018 (pp. 3, 38).

[246] Bjørn Ivar Teigen, Kai Olav Ellefsen, Tor Skeie, and Jim Torre-
sen. Known Performance Issues Are Prevalent in Consumer WiFi
Routers. In: International Conference on Network and Service
Management (CNSM). 2021 (p. 48).

[247] The Linux Kernel. Transparent Hugepage Support. 2025. url:
https://docs.kernel.org/admin-guide/mm/transhuge.html
(p. 37).

[248] Shanquan Tian, Ilias Giechaskiel, Wenjie Xiong, and Jakub Szefer.
Cloud FPGA Cartography using PCIe Contention. In: International
Symposium on Field-Programmable Custom Computing Machines
(FCCM). 2021 (pp. 47, 48).

[249] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and
Kang G Shin. SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks. In: S&P. 2022 (pp. 32, 37, 39).

[250] Theodoros Trochatos, Anthony Etim, and Jakub Szefer. Covert-
channels in FPGA-enabled SmartSSDs. In: ACM Transactions on
Reconfigurable Technology and Systems (2023) (pp. 6, 47, 49).

[251] Theodoros Trochatos, Anthony Etim, and Jakub Szefer. Secu-
rity Evaluation of Thermal Covert-channels on SmartSSDs. In:
arXiv:2305.09115 (2023) (pp. 6, 47, 49).

[252] C-R Tsai, Virgil D. Gligor, and C. Sekar Chandersekaran. On the
Identification of Covert Storage Channels in Secure Systems. In:
IEEE Transactions on Software Engineering (1990) (pp. 47, 48).

[253] Yahya Can Tuğrul, A. Giray Yağlıkçı, İsmail Emir Yüksel, Ataberk
Olgun, Oğuzhan Canpolat, Nisa Bostancı, Mohammad Sadrosadati,
Oğuz Ergin, and Onur Mutlu. Understanding RowHammer Under
Reduced Refresh Latency: Experimental Analysis of Real DRAM
Chips and Implications on Future Solutions. In: 2025 (pp. 32, 41,
42, 44).

[254] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In: ISCA. 1995
(p. 48).

78

https://docs.kernel.org/admin-guide/mm/transhuge.html

[255] John P Uyemura. CMOS Logic Circuit Design. Springer Science &
Business Media, 1999 (pp. 16–18).

[256] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (pp. 4, 11, 22, 32,
37–40, 44).

[257] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikr-
ishnan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel,
Herbert Bos, and Kaveh Razavi. GuardION: Practical Mitigation
of DMA-Based Rowhammer Attacks on ARM. In: DIMVA. 2018
(pp. 3, 32, 40).

[258] Saru Vig, Siew-Kei Lam, Sarani Bhattacharya, and Debdeep
Mukhopadhyay. Rapid Detection of RowHammer Attacks using
Dynamic Skewed Hash Tree. In: Workshop on Hardware and Archi-
tectural Support for Security and Privacy (HASP). 2018 (pp. 32,
41, 43).

[259] John Von Neumann. First Draft of a Report on the EDVAC. In:
IEEE Annals of the History of Computing (1993) (p. 20).

[260] Andrew J Walker, Sungkwon Lee, and Dafna Beery. On DRAM
Rowhammer and the Physics of Insecurity. In: IEEE Transactions
on Electron Devices (2021) (p. 33).

[261] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
DRAMDig: A Knowledge-assisted Tool to Uncover DRAM Address
Mapping. In: Design Automation Conference (DAC). 2020 (p. 25).

[262] Yingchen Wang, Riccardo Paccagnella, Zhao Gang, Willy R
Vasquez, David Kohlbrenner, Hovav Shacham, and Christopher W
Fletcher. GPU. zip: On the Side-Channel Implications of Hardware-
Based Graphical Data Compression. In: S&P (2024) (pp. 5, 47).

[263] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86. In: USENIX Security. 2022 (pp. 5, 7, 11,
47).

79

References

[264] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao
Gang, Grant Garrett-Grossman, Christopher W Fletcher, David
Kohlbrenner, and Hovav Shacham. DVFS Frequently Leaks Secrets:
Hertzbleed Attacks Beyond SIKE, Cryptography, and CPU-Only
Data. In: S&P. 2023 (pp. 5, 11, 47).

[265] Zhenghong Wang and Ruby B Lee. Covert and Side Channels due
to Processor Architecture. In: ACSAC. 2006 (p. 47).

[266] Ziyu Wang, Fan-hsuan Meng, Yongmo Park, Jason K Eshraghian,
and Wei D Lu. Side-Channel Attack Analysis on In-Memory Com-
puting Architectures. In: IEEE Transactions on Emerging Topics
in Computing (2023) (p. 47).

[267] Andrew Waterman and Krste Asanović. The RISC-V Instruction
Set Manual, Vol. I: Unprivileged ISA, Version 20191213. 2019
(p. 20).

[268] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad
Abdullah Al Faruque. Leaky DNN: Stealing Deep-Learning Model
Secret with GPU Context-Switching Side-Channel. In: DSN. 2020
(pp. 5, 47).

[269] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-
todio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms. In:
arXiv:1912.11523 (2019) (p. 39).

[270] Hannes Weissteiner, Fabian Rauscher, Robin Leander Schröder,
Jonas Juffinger, Stefan Gast, Jan Wichelmann, Thomas Eisenbarth,
and Daniel Gruss. TEEcorrelate: An Information-Preserving De-
fense against Performance Counter Attacks on TEEs. In: USENIX
Security. 2025 (pp. 5, 13).

[271] Jeonghyun Woo, Shaopeng Chris Lin, Prashant J Nair, Aamer
Jaleel, and Gururaj Saileshwar. QPRAC: Towards Secure and Prac-
tical PRAC-based Rowhammer Mitigation using Priority Queues.
In: HPCA. IEEE. 2025 (pp. 41, 43).

[272] Jeonghyun Woo, Gururaj Saileshwar, and Prashant J Nair. Scalable
and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation
in Memory Systems. In: HPCA. 2023 (pp. 41, 44).

[273] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: ACM Transactions on Networking (2014) (pp. 47,
48).

80

[274] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud. In:
USENIX Security. 2012 (pp. 10, 47–49).

[275] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security. 2016 (pp. 22, 32,
37, 38, 44).

[276] A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi,
Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Kon-
stantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and
Onur Mutlu. BlockHammer: Preventing RowHammer at Low Cost
by Blacklisting Rapidly-Accessed DRAM Rows. In: HPCA. 2021
(pp. 32, 41–43).

[277] A. Giray Yaglikci, Yahya Can Tuğrul, Geraldo F De Oliviera,
Ismail Emir Yüksel, Ataberk Olgun, Haocong Luo, and Onur Mutlu.
Spatial Variation-Aware Read Disturbance Defenses: Experimental
Analysis of Real DRAM Chips and Implications on Future Solutions.
In: HPCA. 2024 (pp. 4, 32).

[278] Thomas Yang and Xi-Wei Lin. Trap-Assisted DRAM Row Hammer
Effect. In: IEEE Electron Device Letters (2019) (p. 33).

[279] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (pp. 5, 47).

[280] Chi-Weon Yoon. The Fundamentals of NAND Flash Memory: Tech-
nology for tomorrow’s fourth industrial revolution. In: IEEE Solid-
State Circuits Magazine (2022) (pp. 27, 28).

[281] Jung Min You and Joon-Sung Yang. MRLoc: Mitigating Row-
hammering based on memory Locality. In: Design Automation
Conference (DAC). 2019 (pp. 32, 41).

[282] Ismail Emir Yuksel, Akash Sood, Ataberk Olgun, Oguzhan Canpo-
lat, Haocong Luo, Nisa Bostanci, Mohammad Sadrosadati, A. Giray
Yaglikci, and Onur Mutlu. PuDHammer: Experimental Analysis
of Read Disturbance Effects of Processing-using-DRAM in Real
DRAM Chips. In: ISCA. 2025 (p. 51).

[283] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz.
(M)WAIT for It: Bridging the Gap between Microarchitectural and
Architectural Side Channels. In: USENIX Security. 2023 (pp. 5,
47).

81

References

[284] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A
Real-Time Side-Channel Attack Detection System in Clouds. In:
RAID. 2016 (pp. 32, 40, 49).

[285] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis. In: S&P. 2011 (pp. 10, 49).

[286] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (pp. 10, 49).

[287] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses. In: arXiv:1912.03076 (2019) (p. 38).

[288] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi
Wang, and Yuval Yarom. PThammer: Cross-User-Kernel-Boundary
Rowhammer through Implicit Accesses. In: MICRO. 2020 (pp. 4,
11, 22, 32, 37, 38, 44).

[289] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and
Josep Torrellas. Everywhere All at Once: Co-Location Attacks on
Public Cloud FaaS. In: ASPLOS. 2024 (pp. 10, 49, 50).

[290] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and
Josep Torrellas. Last-Level Cache Side-Channel Attacks Are Feasi-
ble in the Modern Public Cloud. In: ASPLOS. 2024 (pp. 5, 10, 47,
50).

82

Part II.

Publications

85

Note that this is only the first part of the thesis. For Part II, please
download the full thesis.

87

88

Statutory Declaration

I declare that I have authored this thesis independently, that I have
not used anything other than the declared sources / resources, and
that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

89

	Attacking and Securing Leaky Systemsat the Hardware-Software Boundary
	Introduction
	Background
	State of the Art
	Conclusion
	References

	Publications
	CSI:Rowhammer
	SUIT
	Presshammer
	HMB Rowhammer
	HMB Side Channel
	Secret Spilling Drive
	Not So Secure TSC

