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Abstract

The interactions at the boundary between hardware and software com-
ponents in modern computers are often a source of leakage. Side-channel
attacks leak private data such as passwords or web browsing behavior, e.g.,
via timing differences. Software-triggered hardware faults let attackers
elevate their privileges and fully subvert systems. Continuously smaller and
faster hardware increases the attack surface by undermining mitigation
efforts and introducing new vulnerabilities that can go unnoticed for years.

In this thesis, we significantly advance the understanding of the attack
surface at the hardware-software boundary and how defenses can constrain
it. In the direction of fault attacks, we show that DRAM disturbance
attacks, like Rowhammer, can exist for a long time before being fully
understood by discovering a link between effects observed in recent work
and our prior work from 2017. We also extend DRAM disturbance research
to new hardware by investigating how SSDs can be utilized in Rowhammer
attacks, finding lower bounds for SSD-based attacks. Both of these works
motivate principled mitigations against DRAM disturbance attacks that
are not tailored to specific attack patterns and targets. Hence, we present
a novel principled mitigation against DRAM disturbance attacks based on
a practical and efficient hardware-software co-design, exceeding the detec-
tion and correction capabilities of state-of-the-art solutions significantly.
Furthermore, we show that with a secure hardware-software co-design
against software-based fault attacks on the CPU, we can even reduce CPU
power consumption while increasing performance.

In the direction of side-channel attacks, we perform the first side-channel
analyses on modern commodity off-the-shelf SSDs. Even though SSDs are
widely used, they have not yet been studied as a source of side channels. We
close this research gap, by presenting two novel software-based timing side-
channel attacks on SSDs that leak sensitive user information, achieving
both, high temporal and spatial resolution.

This thesis consists of two parts. The first part contextualizes my contribu-
tions within the state of the art. The second part presents my unmodified1

first-author publications. All of these papers were anonymously peer-
reviewed and accepted at renowned international conferences.

1The content of the papers is unmodified from the camera-ready versions. The format
of the included papers was modified to fit the layout of this thesis.
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1
Introduction

Users store plenty of secret data on their computers, from secret keys and
passwords to private information like web browsing behavior. As users, we
have to trust the programs handling this information. But for programs
and the operating system to guarantee security, they themselves have to
trust the hardware. Leaky hardware, however, can expose secrets to an
attacker. This leakage can come in different forms, for instance, direct
information leakage through side channels, as well as software-based fault
attacks, like Rowhammer, introducing errors in the computer’s electronics,
i.e., faults, because of “leaking” stray electrons.

Electronics require specific environments to run in. If requirements are
violated, the electronic circuit can be disturbed, causing faults. These
requirements can be direct, like the supply voltage and maximum clock
frequencym or specifications on how the circuit must be operated, but also
outside factors, like temperature or the maximum strength of radiation
the circuit withstands. Faults in CPUs or microcontrollers can impact the
software running on them. When timed correctly or if the software state
is prepared properly, purposefully injected faults can predictably break
the software, undermining the system’s security [15, 25, 71, 229].

Until 2014, all fault attacks were performed with physical access to the
target device [14, 15, 71, 236]. The discovery that they can be caused only
by software has been more recent with Rowhammer [137] and overclocking
or undervolting attacks [179, 208, 243].

Rowhammer is a software-based fault attack affecting the DRAM [137]. It
was first identified as a potential security issue in 2014 [137], and only 9
months later, the first privilege escalation exploits were presented [229].
With the underlying effect being difficult to mitigate, seemingly every new
proposed mitigation [10, 30, 41, 45, 83, 145, 168, 171, 257] was defeated by
the new exploits and hammering techniques, published over the following
years [39, 52, 53, 74, 105, 125, 144, 156, 169, 190, 215, 216, 244, 245,
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1. Introduction

256, 288]. Proposed and implemented mitigations were broken mainly
for two reasons: a deficient implementation due to cost or optimistically
misconfigured threshold values due to lack of insights into RowHammer
vulnerability [39, 53, 74, 105, 144, 163, 188, 277]. For example, target row
refresh (TRR) was implemented insufficiently and could, therefore, be
tricked to protect the wrong rows [53, 105]. Additionally, the discovery
of Half-Double Rowhammer [144] showed that TRR could be used as a
confused deputy, breaking the mitigation in two different ways. Already
existing memory protection mechanisms like error correcting codes (ECC)
are also ineffective as they can only correct a single bit flip, which is
insufficient for targeted Rowhammer attacks [39].

The other group of previously exploited software-based fault attacks
includes overclocking and undervolting attacks [36, 130, 179, 208, 243].
These attacks are enabled by kernel-accessible hardware interfaces that
allow software to control the CPU clock frequency and CPU supply
voltage independently. These two values, clock frequency and supply
voltage, are dependent on each other, and can cause faults in the CPU
if misconfigured [82]. The faults manifest in a small number of CPU
instructions rarely outputting wrong computation results, which can be
used to corrupt cryptographic algorithms, but also program flow and array
accesses. These can be used to attack trusted execution environments
like ARM TrustZone [208, 243] or Intel SGX [36, 130, 179]. However, as
numerous publications show, undervolting also has a great potential to
save CPU power [11, 12, 68, 124, 146, 147, 172, 193, 194].

Side-channel leakage happens whenever a secret influences an unintended
physical property that an attacker can measure. Safe crackers can feel the
slightest manufacturing imperfections when turning locks [184], programs
influence the power consumption of CPUs [31, 141, 157], or take a different
amount of time based on the secret [19, 139]. Information can also leak
through the state of a system, like the state of a CPU cache, influenced by
the secret. The CPU cache can again be measured through a timing side
channel to reconstruct the secret [191, 199]. Side-channel attacks can be
divided into physical and software-based attacks. Physical side channels
include electromagnetic emissions, power consumption, acoustic emissions,
temperature, optical emissions, and vibrations, among others. An attacker
typically needs physical access or close proximity to the device to measure
the side channel signal [23, 80, 141]. Software-based side channels can be
measured from software, and while the underlying reason can be manifold,
they mainly cause variations in timing [19, 139, 191, 199].
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Figure 1.1.: Overview over all my contributions. My main contributions to this
thesis are highlighted in bold. Circles with red text define attacks
and triangles with blue text defenses or neutral work.

Due to their high spatial and temporal precision, CPU caches were the
main software-based side-channel attack target for many years [76, 77,
89, 139, 176, 191, 202, 204, 211, 279, 290]. More recently, research has
also looked into side channels in other CPU and computer components in
general. These components include random-number generation logic [50],
execution ports [4, 22], execution schedulers [57, 58], cache occupancy [233],
the PCIe bus [241], idle states [212, 283], operating system data struc-
tures [111, 164, 165], device sensors [174, 186, 231, 242], software-based
power measurements [143, 157, 186, 242], GPUs [3, 47, 66, 113, 183, 242,
262, 268], frequency scaling [143, 159, 263, 264], and hard-disk drives [23,
80, 128, 155]. These countless side channels were shown to leak not only
cryptographic keys but also private user data like browsing behavior and
user input, or secret kernel information like heap pointers and KASLR
offsets.
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1. Introduction

However, one component used in almost every modern computer is absent
from this list. Commercial off-the-shelf SSDs have seen only very little
research on their side channel behavior. While storage systems were already
identified as a means to construct covert channels in 1973 [150], only a
small body of work showed potential side channel leakage in smart SSDs
containing a programmable FPGA on the cloud [250, 251], and Liu et al.
[161] analyzed the now-discontinued Intel Optane persistent storage.

1.1. Main Contributions

This section introduces the first-authored papers included in this PhD
thesis. In total, I first-authored 7 papers, three of which were published at
top-tier conferences. Figure 1.1 gives an overview of all my contributions.
They range from a novel principled defense against Rowhammer [117];
a mitigation against privileged CPU undervolting attacks that does not
compromise on potential energy savings [116]; a study of the recently
discovered RowPress effect in light of our, in 2017 discovered, one-location
Rowhammer, including the first RowPress exploit [119]; two papers on
the security of the SSD host memory buffer feature, one analyzing its
vulnerability to Rowhammer [115] and one showing that the HMB causes
an exploitable timing side channel [121]; a comprehensive study on the
vulnerability of SSDs to a contention side-channel attack [120]; and, finally,
a virtual machine co-location detection method using the new secure TSC
feature of AMD [118].

CSI:Rowhammer – Cryptographic Security and Integrity against
Rowhammer [117]. With CSI:Rowhammer, we designed a principled
defense against Rowhammer that can be implemented with minimal hard-
ware changes and cannot be affected by an incomplete understanding of
the Rowhammer problem that broke earlier mitigations. CSI:Rowhammer
repurposed the additional memory used for ECCs to store a cryptographi-
cally secure message authentication code (MAC) computed over the data
stored in the DRAM. This code guarantees data integrity on every read,
completely independent of the cause of bit flips in the data. As MACs
are, by design, not invertible, they cannot correct bit flips in the data.
We show that bit flips can be corrected efficiently by search and that by
including the operating system into the correction effort, more advanced
corrections can be performed, e.g., by reloading corrupted data from the
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1.1. Main Contributions

disk. We evaluated the security guarantees and showed that on a system
that is not under attack, silent data corruption happens on average once
every 109 billion years. A very fortunate Rowhammer attacker has a
chance of 9.75 × 10−5 % to produce a second pre-image when causing bit
flips once every 128 ms for a year straight. We evaluated the performance
overhead with gem5, showing that it is only 0.74 % on average. This work
was published at the IEEE Symposium on Security & Privacy (S&P) in
2023 [117] in collaboration with Lukas Lamster, Andreas Kogler, Maria
Eichlseder, Moritz Lipp, and Daniel Gruss.

SUIT: Secure Undervolting with Instruction Traps [116].
The voltage requirement of a CMOS circuit cannot be defined exactly.
Many unpredictable environmental factors like process variation, tem-
perature, aging, or input voltage fluctuations do have an impact on the
propagation delay of a CMOS circuit at specific voltages [64, 148, 153]. If
the propagation delay is too high, undetectable faults can happen inside
a CPU [167, 192]. Prior work showed that these faults can be caused by
privileged software on ARM and Intel CPUs and used to attack trusted
execution environments [15, 36, 130, 179, 208, 243]. However, apart from
these faults, undervolting a CPU can significantly reduce power consump-
tion [11, 12, 68, 124, 146, 147, 172, 193, 194] and even increase performance
due to thermal and power throttling of CPUs [70, 197, 263]. With SUIT,
we show that CPU undervolting can be made secure and reliable by trap-
ping or slightly modifying a small subset of “faulting” instructions. With
SUIT’s modifications, the CPU only runs in an undervolted state with
these faulting instructions disabled. If the running program executes a
disabled instruction, the CPU traps, and the operating system increases
the voltage to guarantee successful execution. Handling the undervolting
state in software allows the operating system to optimize the CPU to the
currently running workload dynamically. With SUIT we can reduce the
power consumption by up to 20 % with a performance increase of over 3 %.
This work was published at the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
in 2024 [116] in collaboration with Stepan Kalinin, Daniel Gruss, and
Frank Mueller.

Presshammer: Rowhammer and Rowpress without Physical Ad-
dress Information [119]. In 2018, we discovered one-location Rowham-
mer, a new hammer method that only accesses a single row in DRAM [74].
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1. Introduction

We explained the unexpected finding of one-location Rowhammer flipping
bits, with the memory controller employing a closed-row policy [74]. Five
years later, in 2023, Luo et al. [163] discovered a different DRAM read-
disturbance phenomenon, called Rowpress. Rowpress flips bits by keeping
a DRAM row open for long periods, unlike Rowhammer, which opens and
closes rows as quickly as possible [137, 163]. With single-row Rowpress
being almost identical to one-location Rowhammer, we revisited the latter,
analyzed it again, and compared it to Rowpress. In our work, we show
that one-location Rowhammer causes bit flips not only due to the memory
controller’s closed-row policy but also the Rowpress effect, coining the
term Presshammer. This finding shows that Rowhammer attacks can exist
for a long time before they are fully understood; only Luo et al. [163]
were able to actually realize the new underlying phenomenon. With our
new understanding of Rowpress, we built the first privilege escalation
exploit that uses timing side-channels to find the correct aggressor memory
locations for Rowpress. On our system, we were able to exploit Rowpress
in less than 10 minutes. This work was published at the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)
in 2024 [119] in collaboration with Sudheendra Raghav Neela, Martin
Heckel, Lukas Schwarz, Florian Adamsky, and Daniel Gruss.

An Analysis of HMB-based SSD Rowhammer [115]. Solid-state
drives can use a part of the main memory, called the host memory buffer
(HMB), to cache logical to physical storage address translations [185].
The HMB improves the SSD’s performance, as DMA accesses to the
main memory are faster than to the flash memory. In this work, we
analyze whether these DMA accesses can pose a security risk by causing
Rowhammer bit flips in the HMB. While we show that software-induced
bit flips in the HMB can cause denial of service, data loss, and even break
SSDs, the accesses from the SSD to the HMB are too infrequent to cause
actual Rowhammer bit flips. This work was published at the International
Conference on Applied Cryptography and Network Security (ACNS) in
2025 [115].

The HMB Timing Side Channel: Exploiting the SSD’s Host
Memory Buffer [121]. In our third work on SSDs, we again analyze the
host memory buffer, this time as a potential source of timing side-channel
leakage. We analyze four SSDs that use the HMB feature and reverse
engineer how they use the HMB and the cache replacement policies. We
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1.1. Main Contributions

show that the HMB induces timing differences in SSD accesses, which are
clearly measurable from user space. We exploit this timing side channel in
four case studies: a covert channel between processes; with up to 8.3 kbit/s;
a UI redress attack that detects when the pkexec binary is executed; a
covert channel between virtual machines; and finally, a remote covert
channel exploiting a web server as a confused deputy to transmit data over
the network. This work was published at the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA) in 2025 [121]
in collaboration with Hannes Weissteiner, Thomas Steinbauer, and Daniel
Gruss.

Secret Spilling Drive: Leaking User Behavior through SSD Con-
tention [120]. Hard disk drives (HDDs) have long been known to be a
source of side-channel leakage, including acoustic emanation [80], electro-
magnetic radiation [23], and timing variation [34, 155]. Chen et al. [34]
suggest that SSDs would mitigate certain HDD timing covert channels be-
cause transfer speeds and response times of modern SSDs are magnitudes
faster than HDD’s. In this work, we show that user space applications
can, nevertheless, mount contention side-channel attacks. We analyzed 12
different SSD models from 7 vendors, ranging from entry-level PCIe 3.0
SSDs without DRAM to the latest PCIe 4.0 SSDs with DRAM caches.
First, we showed that, although different SSDs exhibit very different con-
tention behavior, a covert channel between virtual machines can transmit
data with up to 1 503 bit/s. Second, we invade user privacy by leaking
websites currently visited by the victim. We exploit the fact that web
browsers cache assets of websites, like images and code, and retrieve them
from the disk on subsequent visits [177]. Since every website has a differ-
ent number of assets and loads them at different times, they create an
exact fingerprint. Using a machine learning model, we could fingerprint
100 websites in an open-world scenario with an F1 score of up to 97.0 %.
Both the covert channel and website fingerprinting are surprisingly noise
resilient. This work was published at the Network and Distributed System
Security (NDSS) Symposium in 2025 [120] in collaboration with Fabian
Rauscher, Giuseppe La Manna, and Daniel Gruss.

Not So Secure TSC [118]. In cloud computing, programs of many
different tenants are running on the same machine, each in its own virtual
machine or container. This sharing of physical resources leads to countless
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1. Introduction

different side-channel attacks [20, 101, 176, 240, 274, 285, 286, 290]. How-
ever, the attacker must be co-located on the same machine to exploit these
side channels [94, 289]. Distrusting the cloud provider or legal restrictions
can prevent tenants from moving to the cloud [201, 239]. AMD was the
first to introduce a confidential virtual machine CPU extension, SEV [127],
that isolates the virtual machine from the host. Recently, AMD added the
SecureTSC feature to SEV, which provides a fully trusted TSC timing
source for guests [5, 42]. Until then, the host could modify every timing
source inside virtual machines. In our work, we show that SecureTSC
can be used for reliable and fast co-location detection. It works because
every virtual machine can compute the exact uptime of the CPU it is
running on. Under the assumption that it is very unlikely for two CPUs to
share the exact same uptime, it can be used as a unique identifier. Using
one coordination server that collects and compares all uptimes, we can
detect co-location in a noisy environment in 0.13 seconds. Making use of
the birthday problem, an attacker only needs 480 virtual machines to co-
located at least two of them with a 90 % probability in a data center with
50 000 machines. This work was published at the International Conference
on Applied Cryptography and Network Security (ACNS) in 2025 [118] in
collaboration with Sudheendra Raghav Neela, and Daniel Gruss.

1.2. Other Contributions

This section briefly introduces the peer-reviewed papers I co-authored
during my PhD studies. I co-authored 10 papers, 6 of which were published
at top-tier conferences. These papers range from microarchitectural side-
channel attacks and defenses, to web- and kernel side-channel attacks, a
Rowhammer defense, and a software-based power-analysis attack.

Superscalar processors need a way to schedule ready instructions to the
many execution units efficiently. AMD uses a split scheduler design with
different schedulers for different execution units. In SQUIP [58], we show
that attackers can intentionally fill these schedulers to specific levels. If a
scheduler is full, this can cause a pipeline stall, which is measurable by the
attacker. Using this timing side channel, for example, the exact executions
of integer multiplications on the sibling SMT thread can be detected. We
exploit this side channel to leak an RSA private key and build a covert
channel. This work was published at the IEEE Symposium on Security
& Privacy (S&P) in 2023 [58] in collaboration with Stefan Gast, Martin
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1.2. Other Contributions

Schwarzl, Gururaj Saileshwar, Andreas Kogler, Simone Franza, Markus
Köstl, and Daniel Gruss.

Virtual memory page tables are an often-exploited target of Rowhammer
attacks, leading to privilege escalation [39, 53, 105, 125, 144, 229, 256,
288]. PT-Guard [224] is a defense that utilizes unused bits of page-table
entries to store a cryptographic MAC for integrity protection. This work
only requires hardware changes and no changes to the operating system
software. The performance overhead is only 0.2 % We performed a study
of page-table entries on real systems regarding their value continuity
within page tables and showed that most entries can easily be corrected.
This work was published at the IEEE/IFIP International Conference on
Dependable Systems and Networks in 2023 [224] in collaboration with
Anish Saxena, Gururaj Saileshwar, Andreas Kogler, Daniel Gruss, and
Moinuddin Qureshi.

Software-based power side-channel attacks exploit secret-dependent power
consumption of CPUs only from software [157, 263, 264]. This is possible
because older CPUs provide direct energy measurements to software [157]
and because energy consumption influences the CPU clock frequency, which
is measurable from user space [263]. However, all previous works only
attacked specific targets on the system, mainly cryptographic instructions
or code [157, 263, 264]. With Collide+Power [143], we are the first ones to
show that software-based power side-channel attacks can be used to leak
arbitrary data. We do this by “colliding” the secret data with known data
known to the attacker in the memory hierarchy to force Hamming weight
leakage. This work was published at the USENIX Security Symposium
in 2023 [143] in collaboration with Andreas Kogler, Lukas Giner, Lukas
Gerlach, Martin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan
Mangard.

Minimizing the energy consumption of CPUs has become a very high
priority in the current age of mobile computing. Intel introduced the
tpause instruction that allows unprivileged software to enter new shallow
idle states. In IdleLeak [212], we show that this instruction can be exploited
to build a covert channel, an inter-keystroke timing, as well as a website
and video fingerprinting attack. IdleLeak is based on the fact that the
paused SMT threat is woken up by interrupts to the sibling thread, which
makes it possible to get the exact timings of interrupts of the other thread.
This work was published at the Network and Distributed System Security
(NDSS) Symposium in 2024 [212] in collaboration with Fabian Rauscher,
Andreas Kogler, and Daniel Gruss

11



1. Introduction

Our work Remote Scheduler Contention Attacks [57] shows that the AMD
split scheduler design can be exploited not only with handcrafted assembly
but also from JavaScript. This greatly increases the attack surface as, for
example, malicious advertisements could distribute the attack all over
the World Wide Web. We analyzed all remaining schedulers, including
FPUs absent from the original SQUIP paper [58]. Due to the lack of high-
precision timers, we used a microarchitectural race condition to measure
scheduler occupancy. With it, we built a high-precision inter-keystroke
timing attack and a covert channel between browser windows. This work
was published at the International Conference on Financial Cryptography
and Data Security in 2024 [57] in collaboration with Stefan Gast, Lukas
Maar, Christoph Royer, Andreas Kogler, and Daniel Gruss.

SnailLoad [55] is a novel timing side channel exploiting buffer occupancy
between endpoints on the Internet. The victim connects and downloads
something from the attacker’s server, for example, an image in an ad-
vertisement. The attacker’s server sends the image very slowly, 400 B/s.
The round-trip time between each sent TCP packet and the returning
acknowledgment packet gives the attacker a very detailed picture of cur-
rent network utilization at the victim’s side. With SnailLoad, an attacker
is able to fingerprint the first 90 seconds of 10 videos with up to 98 %
accuracy and fingerprint 100 websites in an open-world scenario with
up to 63 % accuracy. This work was published at the USENIX Security
Symposium in 2024 [55] in collaboration with Stefan Gast, Roland Czerny,
Fabian Rauscher, Simone Franza, and Daniel Gruss.

KernelSnitch [165] is a novel generic timing side-channel attack exploiting
various buffers in the Linux kernel. By measuring hash collisions in specific
hash table buckets using timing differences of syscalls, addresses of kernel
objects can be leaked because they are used as a part of the hash function
input. Leaking kernel object pointers can make kernel exploitation more
stable. We also showed a covert channel and a website fingerprinting
attack. This work was published at the Network and Distributed System
Security (NDSS) Symposium in 2025 [165] in collaboration with Lukas
Maar, Thomas Steinbauer, Daniel Gruss, and Stefan Mangard.

In our real-world study of the security of educational test systems [56],
we evaluate the security of test systems from computer science university
classes and identify various security issues. In three case studies, we show
that security bypasses are possible. Finally, we perform a user study,
asking educators responsible for the test systems about the impact of
potential breaches. The breaches could compromise sensitive student

12



1.3. Outline

records, confidential research data, and in some cases even embargoed
vulnerabilities. This work was published at the Workshop on Operating
Systems and Virtualization Security in 2025 [56] in collaboration with
Stefan Gast, Sebastian Daniel Felix, Alexander Steinmaurer, and Daniel
Gruss.

SMTCache [67] is a new design for secure isolated L1 caches. SMTCache
has multiple L1 caches per core and uses only one L1 cache per security
domain. Therefore, different security domains cannot interfere with each
other. Because only one L1 cache is used at a time, this design does not
increase latency and increases power consumption only slightly. This work
was published at the International Conference on Availability, Reliability
and Security in 2025 [67] in collaboration with Lukas Giner, Roland Czerny,
Simon Lammer, Aaron Giner, Paul Gollob, and Daniel Gruss.

With TEEcorrelate [270], we show how performance counter values of a
confidential virtual machine guest can be made leakage-free, while still
preserving relevant information to the host. TEEcorrelate decorrelates
performance counter values using two components, aggregation of perfor-
mance counter values within configurable length windows, and deferred
and speculative performance counter increases within a configurable de-
viation range. We propose a window length of a few milliseconds and a
range of 1024 deviation. These values are enough to mitigate performance
counter attacks while the host can still perform load-balancing, accounting,
and detection of unusual or malicious activity. This work was published
at the USENIX Security Symposium in 2025 [270] in collaboration with
Hannes Weissteiner, Fabian Rauscher, Robin Leander Schröder, Stefan
Gast, Jan Wichelmann, Thomas Eisenbarth, and Daniel Gruss.

1.3. Outline

Chapter 2 provides background on digital circuits, CPUs, memory, solid
state disks, and confidential computing. Chapter 3 gives an overview of
the state-of-the-art Rowhammer attacks and mitigations, dynamic voltage-
and frequency-scaling studies and attacks, side-channel attacks, and cloud
co-location detection. Chapter 4 concludes Part I. Part II provides a
complete list of the first- and co-authored papers and the camera-ready
versions of the main contributions of this thesis in Chapters 5 to 11.
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2
Background

In this chapter, we provide background on relevant knowledge for this
thesis. First, we explain how digital circuits and their main building block,
MOSFET transistors, work and how supply voltage influences circuit
timing. Then, we provide background on the memory subsystem of a
computer, detailing virtual memory and DRAM. Finally, we give a short
background on solid state drives (SSDs).
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Combinational
Logic Circuit

Memory Clock

Input Output

Figure 2.1.: A synchronous sequential digital circuit. The combinational circuit
transforms the input and data stored in the memory into output and
data to store for the next clock cycle.

2.1. Digital Circuits

Strongly simplified, digital circuits are built using a large number of
connected transistors (electronic switches) to transform input to output
signals and store data [82, 148]. The transistors are connected to build
different basic building blocks [82, 148]. One large set of building blocks is
logical gates that perform a logical operation on their inputs and output
the results; another set is flip-flops, used as a memory to store a binary
value between clock cycles.

These logical gates are then connected to form combinational logical
circuits to perform, for example, mathematical operations like addition or
multiplication. The flip-flops are combined to build SRAM memory, storing
multiple bits, like registers or caches [82, 148]. Connecting a combinational
logical circuit with memory creates a sequential digital circuit, as shown in
Figure 2.1. The combinational circuit transforms an input and a previous
state into an output and values to store in the memory. On each clock
cycle, the memory stores the values at its inputs and outputs them until
the next clock cycle [82, 148].

2.1.1. Metal-Oxide-Semiconductor Field-Effect Transistor

Metal-Oxide-Semiconductor Field-Effect Transistors, short MOSFETs, are
the dominantly used type of transistors for digital circuits [82, 255]. Their
advantages are small static power consumption and size. Figure 2.2 shows
a section view of a planar n-channel MOSFET. The substrate is slightly
p-doped silicon, the drain and source contacts are n-doped. An insulator
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P-Substrate

Source Drain
Insulator

Gate
- +

(a) Open MOSFET, no current is
flowing between source and drain.

P-Substrate

Source Drain
Insulator

Gate
- ++

- - - - - -- - - - -- -

+ + + + + +
+ + + +

(b) Closed MOSFET, current is flow-
ing from the source to the drain.

Figure 2.2.: The structure of a planar N-channel MOSFET in silicon. The gate is
used to “open” and “close” the transistor. To “close” the transistor,
i.e., make it conductive between the source and the drain, a positive
charge is supplied to the gate. This attracts negative charges that
conduct current.

between the substrate and the gate prevents charges from flowing between
the two [82]. The substrate is not conductive.

If a positive charge is supplied to the gate, it attracts electrons from the
substrate, repulsing positive charges, i.e., holes. Because of the insulator
between the substrate and the gate, the electrons gather between the
drain and source as shown in Figure 2.2b. If enough electrons gather, the
MOSFET starts conducting between the drain and source1. When the
positive charge is removed from the gate, the electrons recombine with
the holes, making the substrate non-conductive again [82, 255].

P-channel MOSFETs work the same as n-channel MOSFETs, with silicon
dopings and charges reversed. N- and p-channel MOSFETs are used
together in pairs to build Complementary Metal-Oxide-Semiconductor
(CMOS) logic used in every modern digital circuit [82, 255].

2.1.2. Circuit Timing and Voltage Requirement

For a digital circuit to work correctly, it must adhere to circuit specific
timing and supply voltage limits. If these limits are not met, the circuit
can experience faults [68, 82]. For example, in the case of CPUs, the
integer multiplication unit can output wrong results, which can be used
to attack trusted execution environments [179], see Section 3.2.

1Drain and source are electrically identical. Per definition, the source is the connector
with a higher potential than the drain. The source is “emitting” positive charges.
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tP

(a) tP of an
inverter.

Time

tP HL tP LH

Input
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(b) Impact of the tP s on the
signal through an inverter.

Supply Voltage

t P

(c) Relationship between supply
voltage and tP .

Figure 2.3.: The impact of the propagation delay tP on the traveling through an
inverter and the relationship between supply voltage and tP .

As discussed in the previous section, MOSFETs are switched on and off by
attracting charge carriers to the gate, a process that takes time. The gate,
insulator, and substrate form a capacitor that must be charged2 to attract
enough charge carriers to create a conductive channel in the substrate [68,
187, 255]. The time it takes to charge a capacitor is a function of its
capacity and charging voltage. The capacity is defined by the dimensions
of the transistor [235], smaller transistors switch more quickly. This is also
the reason for smaller node size CPUs reaching higher frequencies with
smaller supply voltages.

These switching delays of transistors in a logical gate cause a so-called
propagation delay tP as shown for an inverter3 in Figure 2.3. The prop-
agation delay of a circuit is defined by the addition of the propagation
delays of all individual logic gates on the longest path, also called the
critical path [187]. For a synchronous sequential digital circuit as shown
in Figure 2.1, the clock frequency must not be higher than the inverse
of the propagation delay of the critical path in the combinational logic
circuit. Otherwise, the output or the values stored in the memory may
not be fully computed and wrong [82].

In a real environment, the voltage frequency dependency of CMOS circuits
is influenced by many internal and external factors [92, 187]. Process

2There are many additional parasitic capacitors in a MOSFET transistor, all influencing
switching time [255].

3Because of the slightly different physical properties of p-channel and n-channel
MOSFETs, there is a difference in the tP from high to low tP HL and low to high
tP LH .
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2.1. Digital Circuits

variation makes every transistor slightly different. Temperature greatly
influences the propagation delay of a circuit. Aging effects like hot-carrier
injection or bias temperature instability cause the propagation delay to
increase over time [227]. Additionally, sudden increases in current can
cause voltage droops. To counter all these effects, digital circuits are
supplied with a higher voltage than the absolute minimum required. This
additional voltage is called the guardband [92].
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Figure 2.4.: Memory organization in a modern computer. The further away a
memory is from the CPU core, the larger and slower it gets.

2.2. Computer Memory

A computer’s memory stores all the data the CPU needs during execution.
This includes the executed instruction stream as well as the data it
processes [259]. In all modern computers, DRAM is used as the main
memory because of its high density, low price, and low power consumption.
However, the DRAM is too slow to feed enough instructions and data
directly to the CPU, which is many magnitudes faster. Therefore, CPUs
contain multiple levels of caches that make recently executed instructions
and accessed data available with lower latency [237].

A logical layer, virtual memory, partitions the memory between all pro-
cesses and enables access rights and execution permission management.
It is configured with page tables that define to which physical address a
virtual address of a specific process is mapped to. The page tables are
set up by the operating system and used by the CPU to translate each
memory access [98].

2.2.1. Organization

Figure 2.4 shows memory organization from the registers, the memory
closest to the CPU, to the main memory, furthest away.

Registers are the memory closest to the CPU’s execution units, accessible
in a single clock cycle by CPU instructions. In the x86 architecture,
instructions can also directly address memory [97]. This is not possible
on ARM [9] or RISC-V [267], which have load and store instructions to
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2.2. Computer Memory

access the main memory. There are typically 16 to 32 general-purpose
registers. Microarchitecturally, register names are not mapped to fixed
locations but are dynamically allocated in the register file, which is usually
a few hundred registers large. Registers use static random access memory
(SRAM).

Between the CPU cores and the main memory are multiple SRAM cache
levels to make data accessible with lower latency. Caches store data that
has a high chance of being accessed in the near future. They work based
on the principle of locality, which states that recently accessed data or
data close by has a higher chance of being accessed again soon. There
are multiple cache levels with increasing size and latency. Modern Intel
and AMD x86 CPUs typically use three cache levels [6, 97]. The last-level
cache is shared between all cores but partitioned into slices. Each core
has one slice, and the slices are connected with a ring bus or a mesh [178].
Apart from a handful of exceptions, caches use SRAM [82, 232].

Apart from caches for instructions and data, CPUs also contain a cache
for virtual-to physical address mappings, called the translation lookaside
buffer, short TLB. It is also split into multiple levels and caches for
translations of different page sizes [96].

The main memory is the largest and slowest memory of a computer that is
directly accessible by CPU instructions. It uses DRAM technology for its
high density and low cost. The main memory is described in more detail
in Section 2.3.

2.2.2. Virtual Memory

Modern computers execute many processes simultaneously besides the
operating system. For stability and security reasons, these processes must
not access the memory of other processes running. All modern CPUs
implement a way to isolate processes called paging. On a system with
paging, a process never accesses the physical memory directly. Instead,
it works in its own private virtual memory space that is translated to
physical memory by the CPU.

Paging fragments the physical memory into pages, typically 4 kB large. A
set of page tables, unique per process, maps the process’s virtual memory
pages to physical memory pages. Page tables are managed in a tree
structure. The highest-level page table is unique per virtual memory space.
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Figure 2.5.: On systems with memory paging, the virtual address is a set of indices
into a tree of page tables. The lowest-level page table contains the
page frame number or address of the physical memory page.

On x86, the physical address of the highest-level page table is stored in
the CR3 register. Every page table has 512 entries pointing to a lower-level
page table. The lowest-level page table points to the mapped page in
physical memory. As shown in Figure 2.5, the virtual addresses the process
uses are actually only a set of indices into all levels of page tables and an
offset within the page.

The operating system is responsible for managing the page tables for
each process and itself. A process can only access the physical pages
that are mapped in its own page-table structure. Apart from page-frame
numbers pointing to the next lower-level page table, they also contain
various bits that control, for example, access rights, i.e., whether the
program is allowed to read, write, and execute memory pages, or the
cacheability of the mapped page. Therefore, it is crucial that only the
operating system has access to page-table pages and not the user space
process itself. Some Rowhammer exploits gain access to their own page
tables to escalate privileges [37, 39, 52, 53, 75, 119, 125, 144, 256, 275,
288], see Section 3.1.3.

22



2.3. DRAM

Row Buffer

DRAM Bank

W
or

dl
in

e

W
or

dl
in

e

Bitline

Transistors

Capacitors

DRAM Cells

(a) The structure of DRAM. A cell consists of a transistor and a capacitor. In a
DRAM bank, cells are aligned in a grid, connected by the word- and bitlines.
The bitlines are connected to the row buffer.

Capacitor

n+

Capacitor

n+

Bitline

n+

Passing
Gate

Wordline Wordline

Transistor Transistor
p-substrate

(b1) The cross section of two cells
as marked by A A' in Fig-
ure 2.6b2.

A

A'2F

3F

(b2) Top view of the cell layout. A
single cell is 2F · 3F = 6F2 large.
The row buffer is not shown.

(b) The physical cell layout of modern 6F2 DRAM [88, 170]. The cells are arranged
slightly rotated to the word- and bitline grid for maximum density. Passing
gates exist because of the grid, but do not connect a bitline to a capacitor.

Figure 2.6.: The schematic and physical layout of DRAM cells and banks.

2.3. DRAM

Dynamic random access memory (DRAM) is a type of memory that is
characterized by its low price, low power consumption, and high density
compared to SRAM. These properties make it the practically exclusive
choice for the main memory of all computers, smartphones, and servers.
This makes the DRAM main memory the largest memory of a computer
directly accessible by CPU instructions.
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2. Background

2.3.1. DRAM Cell

Its high density and low power consumption in comparison to static random
access memory (SRAM) is possible because every bit is stored with only
two components, one transistor and one capacitor, also called a storage
node. Because these capacitors slowly discharge, they require periodic
refreshes not to lose any data, hence, the name dynamic RAM [107].

Figure 2.6 shows the schematic and the physical layout of DRAM cells. A
cell is connected to two signal lines, as shown in Figure 2.6a. The wordline
controls the gate of the transistor, connecting the storage capacitor to the
bitline. The charge in the capacitor is read and written through the bitline.
Cells are connected through the word- and bitlines in a grid. The ends of
the bitlines are connected to the row buffer. By activating a wordline, all
capacitors in its row are sensed by the row buffer. DRAM operation is
described in more detail in Section 2.3.3.

Figure 2.6b shows the physical cell layout of modern 6F2 DRAM [88].
Figure 2.6b1 shows how two capacitors (storage nodes) are connected to
a bitline through a MOSFET transistor each. As shown in Figure 2.6b1,
the active region (p-substrate) is shared by multiple transistors and their
capacitors. This shared active region, which allows electrons to travel
between storage nodes, is the reason for the Rowhammer disturbance
effect [137] described in detail in Section 3.1.1.

Figure 2.6b2 shows the 6F2 layout of the storage node grid in silicon [88].
It is optimized for maximum density by arranging the transistors and
capacitors interleaved. The cross section shown in Figure 2.6b1 is marked
in Figure 2.6b2 with the dotted line. In the 6F2 layout, not all parts of a
wordline sit in an active region connecting a capacitor to a bitline. One
example of this is marked by the orange-striped field in Figure 2.6b1, also
marked in Figure 2.6b2. These regions are no real transistor gates and
are, therefore, called passing gates. They are the reason for the passing
gate disturbance effect exploited by the Rowpress attack [163], described
in more detail in Section 3.1.2.

2.3.2. DRAM Structure and Addressing Functions

The individual DRAM cells are segmented into banks that work indepen-
dently and allow for parallelized accesses from the CPU. The memory
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Figure 2.7.: The DRAM addressing functions of an Intel Skylake CPU with two
DIMMs, one for each channel and two ranks per DIMM [200].

controller of the CPU applies functions, called the DRAM addressing
functions, on the physical address to select a specific bank for each access.

The grids of transistors and capacitors storing the individual bits are
split up into banks. Rows of this grid are typically 8 kB wide. There is
one row buffer per bank, connected to the rows through the bitlines. On
some DRAM modules, the row indexes, i.e., wordlines, are scrambled.
This is relevant for Rowhammer attacks, the reason for it, however, is
probably due to electrical engineering [244]. A DRAM DIMM contains
multiple banks, 16 on DDR4 and 32 on DDR5 per rank. Four banks each
are combined into a bank group [107, 108].

A DDR4 DRAM DIMM is connected to the memory controller over a
channel. Most consumer CPUs contain two memory controllers and have,
therefore, two independent DRAM channels. DDR5 DRAM DIMMs have
two independent channels, doubling the number of channels in most CPUs
for more parallelism [108]. As the number of physical connections between
CPU and DRAM are still approximately the same for DDR4 and DDR5,
DDR5 has a doubled burst length to be able to transmit one cache line
(64 B) in a single burst over the 32 bit wide channel [108].

Commands to the different independent banks can be interleaved, reducing
the overall time the memory controller has to wait for finished commands.
To make the best use of this bank-level parallelism, the memory controller
interleaves the banks [96] by applying DRAM addressing functions on
the physical address to compute the channel, rank, bank group, and bank
select bits. DRAM addressing functions were first reverse-engineered by
Pessl et al. [200]. The DRAM addressing functions of an Intel Skylake
CPU are shown in Figure 2.7. New research followed up with newer tools,
getting the functions for newer CPU generations [16, 53, 60, 85, 86, 106,
261]. Jung et al. [122] further reverse-engineered the physical DRAM
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mapping by using faults induced by targeted heating to get the on-chip
location of DRAM cells.

2.3.3. DRAM Operation

The DRAM protocol is asynchronous. This means that the CPU adheres
to specific timings when sending commands, and the DRAM guarantees
that every command is finished within that time.

Data Access. To access data on the DRAM, the CPU selects a rank,
bank, and row and opens the row to move the data of the row into the
row buffer. To do this, the bitlines of the bank must first be precharged
(PRE). The wordline is activated, connecting the capacitors of a row to the
precharged bitlines, slightly changing the voltage. The sense amplifiers
detect the voltage change and store the result in the row buffer. Physically,
the row buffer and sense amplifiers are one component [170]. This process
is destructive, and it removes all charge from the capacitors in the row.
Therefore, if there is already data in the row buffer, it must first be written
into the previously opened row.

The memory controller can then access the data in the row buffer. The
row buffer acts like an 8 kB large cache, decreasing the latency of accesses
to the currently opened row. This creates a timing side channel, which
was first reported by Pessl et al. [200].

Refresh. The memory controller is also responsible for the refreshes
of all cells in the DRAM. It does so by periodically sending refresh
commands to the DRAM. The DRAM itself keeps track of which rows
were least recently refreshed and can refresh multiple rows within one
refresh command window.

The asynchronous nature of DRAM became a problem for on-DRAM
Rowhammer mitigations like TRR (see Section 3.1.4), as they only have
limited time to perform mitigating refreshes additional to the normal
refreshes within a refresh command window. Therefore, the DDR5 standard
implements an “Alert Back-Off” (ABO) back channel from the DRAM to
the CPU that allows the DRAM to request additional refreshes from the
CPU [108].
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(a) An erased flash memory cell, stor-
ing a logical 1. No electrons are
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Figure 2.8.: A floating gate MOSFET. To program the cell, electrons are tunneled
into the isolated floating gate where they can stay for many years.

2.4. Solid-State Drives (SSDs)

Solid-state drives (SSDs) are storage devices that persistently store data
on integrated circuits, typically NAND flash memory. Because they do
not use any moving parts, they are faster than hard disk drives (HDDs).
Especially, the number of random input-output operations per second
(IOPS) is magnitudes higher on an SSD than on an HDD because of the
HDD’s required disk arm movements for random accesses.

2.4.1. Flash Memory

NAND flash memory is an integrated circuit solid-state memory [8, 280].
The storage of individual bits happens in floating-gate MOSFETs, as
shown in Figure 2.8. With a high voltage at the control gate, electrons can
be trapped in the floating gate (programming). These electrons increase
the threshold voltage of the transistor. The floating gate is fully isolated,
and the electrons stay there for many years. To erase a flash memory cell,
a voltage in the opposite direction is applied to the control gate to push
the electrons back out of the floating gate.

Due to the different high voltage required, NAND flash memory cannot be
written randomly, such as DRAM [8, 280]. However, data can be randomly
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Figure 2.9.: The flash translation layer (FTL) translates the logical address used
by the host operating system to the actual physical location of the
page in the NAND memory on each access.

read from every location. Erased NAND flash memory stores all 1’s, to
write data, specific bits are then set (programmed) to 0. Reprogramming
is possible as long as the new data is a subset with only 1 to 0 transitions.
Erasing NAND flash memory takes significantly longer than reading and
programming it. Additionally, the number of bits that must be read,
programmed or erased at once differs. Typically, the page size used for
reads and programming is 512 B, 2 048 B, or 4 096 B. Erasures happen in
blocks of 32, 64, or 128 pages.

The number of these program-erase cycles of flash memory is limited
because the insulation between the substrate and floating gate is slightly
damaged each time [8, 280]. To extend the lifetime of an SSD, the controller
counts the number of P/E cycles each flash memory block and dynamically
remaps data to wear out all blocks equally fast. This process is called
wear-leveling and is automatically performed by the SSD controller.

2.4.2. Flash Translation Layer

Wear-leveling, garbage collection, and hiding the erase-before-write limita-
tion of flash memory for performance causes the data on an SSD to be
scattered [8, 13, 99, 126, 129]. This makes a persistent translation layer
necessary that translates the ordered logical page addresses, accessed by
the operating system, to the actual physical locations of the data on the
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Figure 2.10.: NVMe SSDs with the host memory buffer (HMB) feature can use a
part of the system RAM to cache FTL entries.

NAND flash chips. This flash translation layer (FTL) is also stored in the
flash memory itself, as it must be persistent.

On every read and write to the SSD, the memory controller must access
the FTL to either get the current translation or update it. Therefore,
accesses to the FTL must be fast. If the SSD controller were to access
the FTL in the flash memory for every read, each read would incur an
additional read, basically halving the IOPS. Therefore, SSD controllers
use caches for their FTL. Budget SSDs use a small on-chip cache in the
SSD controller that caches a small subset of the FTL. High-end “pro”-level
SSDs use a separate DRAM chip next to the memory controller that is
large enough to hold the entire FTL while the SSD is turned on. When
starting, the SSD copies the whole FTL into the DRAM and only reads
it from there, greatly increasing random IOPS. Most mid-range NVMe
SSDs can use a feature called Host Memory Buffer as a trade-off between
cost and performance.

2.4.3. Host Memory Buffer (HMB)

With the HMB feature, NVMe SSDs can request main memory from the
operating system that they then use to cache parts of the FTL [185], as
shown in Figure 2.10. The operating system can then reserve memory
for exclusive access from the SSD. The SSD accesses the HMB through
direct memory accesses (DMA) over PCIe. Kim et al. [133] were the first
to analyze the HMB usage of SSDs and found that the HMB memory is
mainly used to cache parts of the FTL. We found the same to be true [115,
121], see Chapter 8 and 9. Caching parts of the FTL has a performance
advantage over accessing the flash memory for each FTL entry, but is
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slower than accessing an integrated DRAM. As the HMB is typically not
large enough to store the whole FTL, only parts are stored, and different
eviction policies and prefetching define which parts [121].

2.4.4. HMB Prevalence

In our HMB side channel paper [121], we used TechPowerUp’s SSD
database [54] containing 869 SSDs from 109 manufacturers to understand
the prevalence of the HMB feature in SSDs. Of these 869 SSDs, 694 use
the PCIe interface. PCIe is a requirement of the HMB as SATA does not
support DMA accesses. 37 % or 255 of all PCIe SSDs do not have DRAM.
Of these DRAM-less PCIe SSDs, 97.6 % or 249 support the HMB feature.
This shows that the feature is very prevalent in DRAM-less SSDs, as it
enables a performance gain at almost no cost.
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State of the Art

This chapter discusses state-of-the-art DRAM disturbance attacks and
defenses, CPU undervolting, and side-channel attacks. We detail state-
of-the-art DRAM-disturbance exploit techniques and mitigations in Sec-
tion 3.1. Section 3.2, shows how CPU undervolting was used to attack
trusted-execution environments and its potentials. Finally, we provide an
overview of side-channel attacks in Section 3.3, ranging from contention
to storage side-channel attacks and cloud co-location detection.
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3.1. DRAM Disturbance Attacks

In this section, we discuss state-of-the-art software-based DRAM distur-
bance attacks and defenses. Software-based DRAM disturbance attacks al-
low an attacker to flip bits in the DRAM by only accessing it from software.
There are two DRAM disturbance phenomena: Rowhammer [137] and
Rowpress [163]. Rowhammer was identified as a potential security issue by
Kim et al. [137] in 2014. Since then, countless different Rowhammer meth-
ods [53, 74, 105, 144, 206, 229], see Section 3.1.1, exploit techniques [21,
26, 37, 39, 52, 53, 75, 103, 119, 125, 144, 149, 213, 215, 249, 256, 275, 288],
see Section 3.1.3, and also possible defenses [10, 18, 27, 30, 32, 33, 38,
41, 45, 51, 63, 72, 76, 83, 87, 88, 100, 102, 109, 114, 117, 123, 131, 137,
145, 151, 171, 189, 196, 198, 210, 221, 223, 224, 225, 230, 238, 253, 257,
258, 276, 281, 284], see Section 3.1.4, were published and implemented.
Rowpress is another software-based DRAM disturbance attack that was
only discovered recently by Luo et al. [163] in 2023, see Section 3.1.2.

In this section, we show that although more than ten years have passed
since the publication of Rowhammer, the problem still exists to this
day. A countless number of defenses were repeatedly broken by novel
Rowhammer patterns and exploit techniques [39, 53, 74, 105, 144]. With
this thesis, we concur with others that a full mitigation of Rowhammer is
only possible with full integrity protection of all data in the DRAM [51,
220]. We argue that the underlying problem is that academics, as well as
DRAM manufacturers, try to mitigate Rowhammer without it being fully
understood yet [74, 144, 163, 188, 277]. Our work, CSI:Rowhammer [117]
(Chapter 5) shows that the performance overhead of adding integrity
protection to all data in the DRAM is negligible. Integrity protection, in
addition to mitigations targeting Rowhammer more directly, could solve
the problem of DRAM disturbance attacks once and for all. In our works
Presshammer [119] (Chapter 7) and HMB Rowhammer [115] (Chapter 8)
we further the understanding of DRAM disturbance attacks.

3.1.1. Rowhammer

Rowhammer allows an attacker to flip bits in DRAM by frequently access-
ing (hammering) one or multiple rows adjacent to the victim row [137].
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(d) Capacitor Discharge: Every in-
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the neighboring capacitor until the
stored bit flips.

Figure 3.1.: How the Rowhammer effect recombines charges in the victim capaci-
tor, flipping the stored bit [88, 137].

Root Cause. The underlying cause of Rowhammer is the shared sub-
strate in which multiple cells are embedded [88, 195, 219, 260, 278], as
we explained in Section 2.3.1. Figure 3.1 illustrates the physical cause of
the Rowhammer effect. When the wordline is on, the storage capacitor
is connected to the bitline, and electrons from the capacitor flow along
the transistor’s channel. After the wordline is turned off, the electrons
are no longer held to the transistor’s channel and spread out. Most are
injected back into the storage capacitor where they came from, as it is the
closest, but some electrons “leak” and are injected into other neighboring
storage capacitors. With each leaking electron, the charge in this storage
capacitor is depleted slightly. If the wordline is toggled often enough, the
charge depletes to a point below the threshold where the bit flips.
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(a) Double-Sided (b) One-Location (c) Multi-Sided (d) Half-Double

Figure 3.2.: Four hammer patterns. Double-sided Rowhammer [229] sandwiches
the victim (blue) between two attacker rows (red). One-location
Rowhammer [74] accesses only a single row in a bank. Multi-sided
Rowhammer patterns [53, 105] access additional dummy rows (or-
ange) to evade TRR mitigations. Half-double Rowhammer [144]
provokes mitigative TRR accesses (green) around the victim row to
flip bits.

Hammer Patterns. Figure 3.2 shows four different hammer patterns.
The hammering patterns describe which rows in the DRAM an attacker
accesses. Initially, Kim et al. [137] only hammered by frequently accessing
multiple single rows in a DRAM bank, i.e., single-sided Rowhammer. In
2015, Seaborn et al. [229] showed that Rowhammer can induce more bit
flips if not any two rows are hammered but two rows sandwiching the
victim rows, i.e., double-sided Rowhammer.

One-location Rowhammer only accesses a single row of the DRAM and
still causes bit flips [74]. This is unexpected because the memory controller
usually keeps the row open in the row buffer, serving the data from
there. This behavior of a memory controller, keeping the row open as long
as possible, is called the open-row policy. However, memory controllers
can also work with a closed-row policy where they close a row after
each access [74]. This can have performance benefits on highly multi-
threaded systems, where subsequent accesses are unlikely to go to the
same DRAM row. In Presshammer [119] (Chapter 7), we show that one-
location Rowhammer also causes bit flips due to the Rowpress effect that
was not yet known when one-location Rowhammer was found.

DRAM implementing the target row refresh (TRR) mitigation, see Sec-
tion 3.1.4, is not vulnerable to single- and double-sided Rowhammer [53,
83]. To evade TRR, Frigo et al. [53] included decoy accesses to their
multi-sided Rowhammer pattern. These decoy accesses are synchronized
to refresh commands and can confuse certain TRR implementations to
protect the wrong victim rows. Additionally, they can also cause too many
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potential victim rows, so that the DRAM is overwhelmed and cannot
refresh all of them in the time it has available during the periodic refreshes.
Their fuzzer was able to induce bit flips in 13 of 42 tested DDR4 modules.
With Blacksmith, Jattke et al. [105] describe the different decoy accesses
with a frequency, phase and amplitude and their fuzzer varies them to find
long and complex hammer patterns. Jattke et al. [105] were able to flip
bits in all of their 40 tested DDR4 modules. Gerlach et al. [61] reproduced
bit flips in 8 of 10 tested DDR4 modules using the Blacksmith fuzzer.

TRR can also be exploited as a confused deputy to aid Rowhammer
attacks. With Half-Double Rowhammer [144], we present a new physical
property of Rowhammer. When hammering one row further away from the
victim row (far aggressor), very infrequent accesses to the row neighboring
the victim row (near aggressors) are enough to “transport” the leaked
stray electrons to the victim row capacitors. This hammer pattern is shown
in Figure 3.2d. On DRAM that is protected with TRR, the accesses to
the near aggressor are caused by TRR, which tries to protect these rows
from the far aggressor. However, due to the half-double effect, these TRR
accesses cause the bit flips in the actual victim row. We were able to flip
bits on 5 out of 7 mobile devices with LPDDR4x DRAM [144].

3.1.2. Rowpress

Rowpress also allows an attacker to flip bits in DRAM. Instead of opening
and closing a row as quickly as possible, Rowpress keeps (presses) one or
multiple rows adjacent to the victim row open for as long as possible [163].
Rowpress is caused by the passing-gate effect and affects different cells
than Rowhammer [163]. Figure 3.3 shows how the passing-gate effect
causes bits to flip in the DRAM. Due to the physical layout of a modern
6F2 DRAM cell, not all gates on a wordline connect a storage node to a
bitline. This is shown in Figure 2.6b in Section 2.3. When a wordline is
activated, these so-called passing gates on this wordline attract electrons
from the storage node. The longer the wordline is active, the more electrons
are attracted. When the wordline is turned off, most electrons return to
the storage node they came from, but some “leak” further out into the
substrate to another capacitor. This reduces the charge in this neighboring
capacitor, flipping bits [88, 93].

Luo et al. [163] analyzed 164 DRAM chips using an FPGA platform and
showed that it is a common DRAM vulnerability across all three major
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Figure 3.3.: How the Rowpress effect removes charges from the victim capacitor,
flipping the stored bit [88, 163].

DRAM manufacturers. Similar to Rowhammer, Rowpress is also more
effective if the victim row is sandwiched between two aggressor rows. To
cause Rowpress bit flips from software, Luo et al. [163] keep a row open as
long as possible by accessing up to all 128 cache lines within one row. They
were able to cause Rowpress bit flips in one Samsung DRAM DIMM from
2018. The DIMM we used in the PressHammer paper [119] (Chapter 7) is
also from 2017. This suggests that modern Rowhammer mitigations are
well equipped to also prevent Rowpress bit flips.

Recent work by Jattke et al. [104] used a DRAM interposer and a oscil-
loscope to analyze Rowpress on real systems in more detail. They found
that the pattern accessing all 128 cache lines within one row keeps the
row open for at most 292.95 ns, much less than allowed by the standard.
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3.1.3. DRAM Disturbance Exploitation

From now on, we will use Rowhammer as a synonym for Rowhammer
and Rowpress, as the following concepts apply similarly to both DRAM
disturbance attacks. Rowhammer flips bits at seemingly random locations
in the DRAM. Apart from the different hammering patterns to get bit
flips, actually causing Rowhammer bit flips from unprivileged programs
and exploiting these bit flips is well-researched [21, 26, 35, 37, 39, 52, 53,
75, 103, 119, 125, 144, 149, 213, 215, 249, 256, 275, 288].

DRAM Addressing. Programs running on a CPU cannot directly
address specific rows in the DRAM. Two layers of indirection, i.e., map-
pings are between the address a program accesses and the row and bank
addressed in the DRAM [200]. The first indirection is virtual memory, as
described in Section 2.2.2, that maps the seemingly contiguous and private
virtual memory space to physical memory [98]. The second indirection
is the DRAM addressing functions, which map the physical addresses to
ranks, bank groups, banks, and rows, described in Section 2.3.2.

The virtual-to-physical address mapping is not readable by unprivileged
processes anymore after it was disabled to prevent the first Rowhammer
exploits [138]. Therefore, many different methods to get physically contigu-
ous memory were proposed [75, 144, 256]. Gruss et al. [75] were the first
to use 2 MB transparent huge pages. Web browsers automatically allocate
them for large arrays [75], and they can also be requested from Linux using
madvise on most systems [154, 247]. However, transparent huge pages are
not available on all systems, e.g., Android, and can easily be turned off on
systems where they are enabled by default [247]. Alternatively, Van der
Veen et al. [256] massaged Linux’s buddy allocator [69] to get predictable
physical page placement. Memory allocator massaging was also used by
multiple exploits afterwards [52, 149, 215]. Other exploits [52, 144] used
the fact that when allocating enough memory, chunks will be contiguous,
and use the bank conflict side channel to detect this contiguity.

Contiguous memory gives an attacker knowledge about additional physical
address bits above the page offset. These bits can then be used with the
DRAM addressing functions, which we explained in Section 2.3.2, of the
attacked CPU to address rows in specific banks [52, 144].
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Figure 3.4.: The Rowhammer page table exploit. By hammering PTE1 using
aggr1 and aggr2 the PFN is changed to point to the physical address
of PTE2. Now the attacker has write access to PTE2 through its
virtual mapping vaddr1 and can access the whole physical memory.

Exploit Targets. Rowhammer can be used to attack a large variety
of systems. These attacks can be classified by their goal, e.g., privilege
escalation in the operating system or the browser, stealing of cryptographic
keys, or denial of service, and the target, e.g., Intel or ARM CPUs.

The first two Rowhammer exploits were presented by Seaborn et al. [229].
They flipped bits in machine code executed in the Chrome NaCl sandbox to
disable the jump target sanitization, so that they could jump to unaligned
targets, e.g., a syscall instruction hidden in a movabs instruction. The
second exploit they developed is the most used Rowhammer privilege
escalation exploit to this day [37, 39, 52, 53, 75, 119, 125, 144, 256, 288].
It uses Rowhammer to flip bits in the page-frame-number in a page-table
entry to gain write access to a page table, as shown in Figure 3.4. This
exploit can also be executed by hammering through implicit page-table
accesses [287, 288]. A similar technique was also demonstrated against
hypervisors [35, 275].

Rowhammer is also possible from JavaScript [26, 52, 75, 215]. A similar
approach to the page table exploit was used in browser sandbox escapes [26,
52, 215]. For this exploit, a fake array object is created, and a pointer
is hammered to point to this object. This fake array object can then be
modified to point everywhere in the browser’s memory. Tatar et al. [245]
and Lipp et al. [156] demonstrated Rowhammer attacks over the network.
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Gruss et al. [74] were the first to flip bits in a binary to elevate privileges.
They identified 29 different offsets in the sudo binary that can be flipped
to break the password verification logic. They combined this technique
with one-location Rowhammer from within an SGX enclave for a stealth
attack.

Kwong et al. [149] shows that Rowhammer can also be used to directly
leak data, exploiting the data dependency of Rowhammer [137]. To-
bah et al. [249] used Rowhammer on kernel code to reenable Spectre
attacks. Rowhammer can also be used to steal cryptographic keys [21, 213],
also in post-quantum schemes [7, 180]. Jang et al. [103] and Gruss et al. [74]
exploit Rowhammer for denial of service attacks by halting SGX enclaves.
Recently, Jattke et al. [106] demonstrated that Rowhammer is also possible
from AMD CPUs, and Marazzi et al. [169] demonstrated Rowhammer on
RISC-V. The first exploit on ARM was already presented in 2016 [256]
using uncachable memory, followed by Rowhammer from the integrated
ARM GPU [52]. Weissmann et al. [269] performed a Rowhammer attack
from an FPGA through DMA. Qiao et al. [206] demonstrated Rowham-
mer using non-temporal instructions and Heckel et al. [84] increased the
hammer effectiveness by up to 830 with multithreaded Rowhammer using
the cmpsb and repe instructions.

In our work “An Analysis of HMB-based SSD Rowhammer” [115] (Chap-
ter 8), we analyzed whether SSDs using a host memory buffer, see Sec-
tion 2.4.3, can be used as a confused deputy to hammer the HMB in the
main memory. However, our results show that the HMB itself is integrity
protected, and bit flips are detected. Upon detection, all of our tested
SSDs freeze, leading to a denial of service or a data loss in the worst case.
Additionally, the SSD’s accesses to the HMB are not frequent enough to
induce bit flips even on highly susceptible DRAM.

3.1.4. Software-Only Defenses

Since the first publication about Rowhammer, attackers and defenders have
been constantly working to outsmart each other [74, 181]. Additionally,
the ever-shrinking node size exacerbates the problem with every new
DRAM generation [132]. While attackers are mostly academic researchers,
Rowhammer defenses were proposed by academia but also developed and
implemented by DRAM and CPU manufacturers [109]. Defenses can be
categorized into software-only defenses, which are easy to implement and
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deploy, and defenses (partly) implemented in hardware, which are more
difficult to deploy but potentially more effective.

Especially in the first years of Rowhammer research, many software-only
defenses were proposed [10, 30, 41, 100, 145, 257]. As Rowhammer attacks
cause suspicious CPU cache usage, similar to CPU cache side-channel
attacks, cache side-channel detection methods were also proposed to detect
ongoing Rowhammer attacks [38, 76, 87, 100, 198, 284].

ANVIL by Aweke et al. [10] detects ongoing Rowhammer attacks using
cache hardware performance counters similarly to cache side-channel
detection works [38, 76, 87, 198, 284]. ANVIL reduces false positives by
only intervening if at least two rows on the same bank are hammered.
Machek [41] proposed counting the number of cache misses in the kernel
and halting the CPU until the next refresh if it exceeds a preconfigured
threshold. Irazoqui et al. [100] use static code analysis to detect instructions
often used in cache and Rowhammer attacks like clflush, non-temporal
moves, rdtsc, or fences. Brasser et al. [30] add guard rows around kernel
memory to increase the distance between potential aggressor and victim
rows. GuardION by Van der Veen et al. [257] is a mitigation against
their attack on Android ARM devices [256]. They put guard rows around
DMA memory requested using Android’s ION driver. ZebRAM [145] also
works by adding guard rows, however, between every row. It then uses all
these guard rows as an integrity-protected swap memory to not halve the
memory capacity.

Di et al. [45] present “Copy-on-Flip”, a defense that can be purely im-
plemented in software if the system uses ECC DRAM. This makes it
a software-only defense relying on a readily available hardware feature.
ECC DRAM is not enough to prevent a Rowhammer attack, as shown
by Cojocar et al. [39]. However, the exploit of Cojocar et al. [39] requires
a templating phase where it collects single-bit flips that are corrected
by ECC to combine these bit flips in the second step. Copy on flip [45]
prevents this by remapping pages whenever correctable bit flips happen.

3.1.5. Hardware-Based Defenses

Over the years, improving attacks have shown that software-only defenses
are insufficient to solve Rowhammer [74]. Therefore, many mitigations that
require hardware changes have been proposed and also implemented [18,
27, 32, 33, 51, 63, 72, 83, 88, 102, 109, 114, 117, 123, 131, 137, 151, 171,
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189, 196, 210, 221, 223, 224, 225, 230, 238, 253, 258, 276, 281]. These
hardware-based defenses can be classified into defenses that prevent bit
flips and defenses that detect bit flips to correct them. Both methods have
disadvantages: While preventive defenses can become obsolete with new
attack methods, correcting detected bit flips becomes inefficient quickly
if bit flips are too frequent. We argue that combining both methods can
most efficiently prevent current and future Rowhammer attacks.

Defenses Preventing Bit Flips

This class of defenses tries to prevent bit flips by protecting potential
victim rows before their cells are discharged below the threshold [18, 27,
32, 88, 102, 110, 114, 134, 136, 137, 151, 168, 171, 189, 196, 209, 210,
221, 225, 230, 238, 253, 258, 271, 272, 276, 281]. We further classify these
defenses into three different methods of identifying potential victim rows
and by their actions after a potential victim row is identified.

Probabilistic Victim Row Identification. Already with the first
paper on Rowhammer, Kim et al. [137] proposed a number of potential
mitigations, the most prominent being probabilistic adjacent row activation
(PARA), now called probabilistic target row refresh (pTRR) [123]. Intel
has implemented pTRR in some of its CPUs since 2014 [123]. With pTRR,
whenever a row is accessed, its neighboring rows are refreshed with a low
probability. If the probability is chosen well, the performance overhead
is negligible, while Rowhammer bit flips become very unlikely. Similar
probabilistic mitigations were proposed by Son et al. [238], You et al. [281],
and Kim et al. [136].

Qureshi et al. [210] use only a single counter to count row activations and
probabilistically select which row is counted at each refresh. Jaleel et al.
[102] use a small number of counters per bank and do not use heuristics
to select which row is counted intentionally. Because of that, they claim
to be immune to specifically crafted access patterns that manage to break
policy-driven defenses [53, 105].

Counter-Based Victim Row Identification. DRAM manufacturers
and JEDEC acted rather quickly and added target row refresh (TRR)
to many later DDR4 DIMMs and as a required feature to the LPDDR4
standard [109]. TRR does not probabilistically refresh neighboring rows
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but actually counts the accesses to rows and refreshes the neighbors if a
certain DIMM-specific threshold is reached [72, 83, 109, 112, 131].

However, to save die area and power consumption, these first TRR im-
plementations only counted a limited number of rows [53, 105]. With
complex access patterns, the sampler can be tricked to count the accesses
to decoy rows and not the actual aggressors [53, 105], as explained in
Section 3.1.1. Another issue is that the DRAM has only limited time
to perform preventive row refreshes. If more victim rows are hammered
than the DRAM can refresh, bit flips still happen, even if the DRAM
detected the victim rows in time [53, 168, 171, 253]. A third issue with
TRR, half-double Rowhammer, was presented by Kogler et al. [144] where
TRR actually aids the attacker to hammer from a greater distance, as
explained in Section 3.1.1. Half-double Rowhammer can be mitigated by
increasing the range of protected rows around a detected aggressor row [33,
83, 171, 189, 210, 223, 276].

A large body of works continuously improves the area-, performance- and
power-overhead of counter-based mitigations [18, 27, 88, 102, 134, 168,
171, 189, 253]. These works aim to make the mitigation cheaper and at
the same time more difficult to evade.

Hong et al. [88] propose a stochastic and approximate counting (DSAC)
algorithm that filters out the accesses to decoy rows that evaded prior
TRR implementations. However, DSAC was later broken by Qazi et al.
[205] due to the internal state of the used LFSR random number generator
being too small. Bostanci et al. [27] use a data structure called count-min
sketch to estimate the activation count of rows, requiring significantly
less area than having a counter per row. This design may overestimate
but never underestimates the activation count. Olgun et al. [189] make
the key observation that workloads usually access the same row ID in
multiple banks due to the DRAM addressing functions aiming for bank-
level parallelism, see Section 2.3.2. Therefore, they use the Misra-Gries
algorithm to track aggressor rows, not per bank but shared across all
banks.

Per Row Activation Counting (PRAC). Jedec recently added per-
row activation counting (PRAC) to the DDR5 standard [108, 222]. A
DRAM with PRAC contains a counter for every single row in each bank.
Bennett et al. [18] showed that this approach is viable by using a novel
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DRAM mat design that does not add any performance overhead. Ben-
nett et al. [18] also use the already existing ALERTn signal to pause the
memory controller, called ALERT-Back-Off (ABO). This is required to
perform additional preventive refreshes that did not fit into the refresh
commands.

Canpolat et al. [33] are the first to perform a comprehensive study of the
PRAC feature as defined in the DDR5 standard [108]. They show that
due to the ABO signal, a crafted adversarial access pattern can hog up to
94 % of DRAM throughput and degrade system throughput by up to 95 %.
Woo et al. [271] and Qureshi et al. [209] both show that the initial design
proposed by Bennett et al. [18] is insecure, additionally to the potentially
high overhead found by Canpolat et al. [33]. Both works propose secure
designs with less performance overhead.

Other Victim Row Identification Methods. Apart from the designs
that track potential victim rows in the DRAM, some designs use other
methods inside the memory controller. Vig et al. [258] use a sliding window
mechanism to detect currently attacked victim rows and add them to an
integrity tree to protect the data in them. Seyedzadeh et al. [230] use
adaptive trees of counters, Lee et al. [151] time window counters, Park et al.
[196] content addressable memory [110], Yaglikci et al. [276] bloom-filters
and Joardar et al. [114] machine learning.

Preventive Refresh. Most proposed defenses refresh victim rows after
they exceed the activation threshold. To have enough time to perform all
required refreshes, the DDR5 standard adds two mechanisms [108]. The
first one is Refresh Management (RFM). The memory controller keeps
track of the number of activations sent to the DRAM banks and gives
a bank additional time for refreshes by sending RFM commands if the
activations exceed a threshold. The second mechanism is the ALERT-
Back-Off (ABO) signal that the DRAM can send to the memory controller
to force it to send RFM commands. Jattke et al. [104] recently found that
neither Intel nor AMD CPUs send RFM commands even if the DRAM
requires them to mitigate Rowhammer effectively.

Recent works also looked at ways to make preventive refreshes more
efficient. Rega [171] proposes a DRAM design with an additional set of
buffering sense amplifiers that are only used for data transfers. These free
up the other sense amplifiers to perform refreshes in parallel. Tugrul et al.
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[253] study real DRAM chips and find that the refresh latency tRAS can be
decreased by 64 % while requiring only 0.54 % additional refreshes [253].

Row Remapping. Some defenses do not refresh potential victim rows
but also remap them to another location in the DRAM bank to shield them
from future attacks. Saileshwar et al. [221] detect aggressor rows similar
to Park et al. [196], however, they do not refresh the victims but swap
the aggressor rows with other randomly selected rows. This is to prevent
attacks like Half-Double [144]. Saxena et al. [225] propose a very similar
mitigation, remapping the aggressor rows to a quarantine area. Woo et al.
[272] find an attack pattern that breaks the defense by Saileshwar et al.
[221] in under a day and propose a more secure design themselves.

Data Integrity-Based Defenses

These defenses aim to detect data integrity violations and then correct
the bit flips whenever possible. Multiple mitigations have been proposed
using message authentication codes or hashes to ensure the integrity of
data in the DRAM [51, 91, 220]. However, all of them have shortcomings
regarding the threat model of a Rowhammer attack. Ivec [91] and Syn-
ergy [220] protect against local attackers with capabilities exceeding those
of a Rowhammer attacker. Their integrity trees reduce the performance
significantly. Safeguard [51] can only correct a single bit flip.

In our work PT-Guard [224], we propose a mitigation to protect page
tables from bit flips because they are an easy attack target for privilege
escalation [35, 39, 52, 53, 75, 119, 125, 144, 256, 275, 288]. PT-Guard [224]
combines unused bits in groups of 8 page-table entries to store a 96-bit
MAC for data integrity protection.

In CSI:Rowhammer [117] (Chapter 5), we protect all data against integrity
violations using a MAC, albeit with a small memory overhead similar
to ECC DRAM. This approach guarantees that no bit flips, whatever
their reason is, go undetected and can be exploited. The only remaining
possible attack on a system with CSI:Rowhammer would be a denial of
service. We show that the performance overhead is small, and correction
of multiple bit flips is realistic as we perform the correction in the kernel.
This correction of multiple bit flips in the kernel enables techniques like
reloading corrupted cached data from disk. However, CSI:Rowhammer
does not have Chipkill-like correction capabilities [43] for all data, similar
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to current SECDED ECC. We argue, that the possibility to correct bit
flips spread over multiple DRAM chips is more important if Rowhammer
is a threat. Future work could focus on further improving the trade-off
between performance and Chipkill-like correction capabilities of data
integrity-based defenses.

Currently, no data integrity-based defense has the correction capabilities
to efficiently correct the high number of bit flips in modern high-density
DRAM if they were otherwise unprotected. Data integrity-based defenses
must be paired with defenses preventing bit flips. On the other hand,
defenses preventing bit flips should also be paired with data integrity-
based defenses to protect against novel attack methods [144], incomplete
defense implementations [104], or other causes of bit flips [43].

3.2. CPU Undervolting

As described in Section 2.1.2, digital circuits are typically supplied with a
slightly higher voltage than the minimum required. This so-called voltage
guardband guarantees the circuit’s correct functionality even when chang-
ing die temperature, aging, or supply voltage droops [70, 197]. Reducing
this voltage guardband saves energy and can even increase performance
on modern CPUs [70, 116]. This is due to the fact that the CPU clock rate
is typically limited by the thermal design power (TDP). The TDP defines
the maximum power the CPU is allowed to draw for a prolonged time, or
the maximum CPU die temperature directly. With a reduced power con-
sumption due to a lower supply voltage, the CPU can clock higher before
reaching the TDP. Not surprisingly, given these benefits, the undervolting
potential of CPUs and resulting power savings and performance increases
were thoroughly researched [68, 70, 124, 146, 193, 194].

However, CPU undervolting can also be used to attack trusted-execution
environments [15, 130, 142, 179, 208, 243]. On many CPUs, the multipli-
cation and AES circuits are among the circuits with the highest voltage
requirement. If this requirement is not met, the calculations can produce
faulty results. This can be exploited by undervolting CPUs to precisely the
voltage level where the CPU continues running normally, but these instruc-
tions fail [130, 179, 208, 243]. Tang et al. [243] attack ARM TrustZone by
overclocking the CPU, which has the same effect as undervolting. Qiu et al.
[208] manipulate the voltage to attack ARM TrustZone. Murdock et al.
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[179] and Kenjar et al. [130] exploit Intel SGX enclaves by undervolting to
steal cryptographic keys or induce memory safety into bug-free enclaves.

Barenghi et al. [17] analyze different countermeasures to protect cryp-
tographic algorithms against fault attacks. Their framework can auto-
matically add instruction duplication, instruction triplication, and parity
checking for stored values to programs. Kogler et al. [142] presented a tar-
geted countermeasure against CPU undervolting attacks against trusted
execution environments. They analyzed a range of CPUs and confirmed
that integer multiplication is the first faulting instruction on most CPUs
at different frequencies. An enclave can therefore use multiplications where
the correct results are known as trap instructions to detect whether the
CPU is undervolted.

A number of works also try to enable stable and secure undervolting [11,
12, 172], including our work SUIT [116] (Chapter 6). Bacha et al. [11, 12]
utilize on-chip ECC of Intel Itanium CPUs to guide their undervolting. On
Intel Itanium CPUs, the cache and register file are the first components
that become erroneous when undervolting. Intel Itanium CPUs can also
report corrected ECC errors in the cache and register file to the operating
system. This allows Bacha et al. [11, 12] to keep the voltage at exactly a
level where no error occurs. Unfortunately, errors in multiplication circuits
cannot easily be detected. Koutsovasilis et al. [147] undervolt the CPU
depending on the running workload based on the performance monitor
counter changes it causes. Therefore, Maroudas et al. [172] additionally
also differentiate between kernel and user space, based on their observation
that user space code can be undervolted more than kernel code. They do,
however, require voltage changes on every kernel entry and exit. Ernst et al.
[49] proposed a hardware solution to enable secure undervolting. Their
design Razor, uses slightly skewed clock edges and shadow circuitry to
detect when critical paths are close to violating their timing constraints.
Razor would add considerable complexity to modern chip designs and
is not used in practice. In our work SUIT [116] (Chapter 6), we trap
potentially faulting instructions when undervolting to only execute them
while the CPU is supplied with a high enough voltage. The performance
overhead of our design is smaller than the potential performance gain
from undervolting, enabling a higher performance at a lower CPU power
consumption.
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3.3. Side-Channel Attacks

In this thesis, we will only focus on software-based side channels. Software-
based side channels do not require physical access to the device that is
attacked. The first software-based side-channel attack by Kocher [139]
leaked keys from Diffie-Hellman, RSA, and DSS via timing. Percival [199]
was the first to perform a Prime+Probe attack on CPU caches, attacking
an RSA algorithm. Osvik et al. [191] performed the first Prime+Probe
attack on AES T-tables and coined the term Prime+Probe. Bernstein [19]
timed the execution of AES T-tables over the network with many different
messages to leak the key. Since then, the very high spatial and temporal
resolution of CPU cache side channels has been exploited for a variety
of attacks that became more generic compared to attacks on specific
cryptographic implementations [76, 77, 89, 176, 202, 204, 211, 279, 290].

Recently, with CPU caches being very well researched, more research
has focused on other parts of a computer system like, execution units
and schedulers [1, 4, 22, 57, 58, 218, 265], the memory bus [90, 273, 274],
operating system data structures [111, 164, 165], DRAM row conflicts [200,
228], the page cache [73], software-based power and frequency scaling [143,
157, 159, 207, 263, 264], device sensors [174, 186, 231], CPU fans [79],
performance counters [59, 78], the PCIe bus [65, 234, 241, 248], in-memory
computing architectures [48, 266], FGPAs [65, 203, 250, 251], interrupt
detection [40, 212, 283], GPUs [3, 47, 66, 113, 183, 242, 262, 268], and
random number generation logic [50]. However, while storage has been
identified as a potential source for side- and covert channels long before
the first cache side channels [90, 128, 150, 162, 226, 252], the research on
commercial off-the-shelf SSDs is sparse.

Covert Channels. Side channels typically have a specific target, e.g.,
cryptographic keys, with an attack on this target evaluated in the work.
However, comparing their capabilities became a non-trivial task given
the wide range of side channels. One way to compare side channels is by
their channel capacity, the rate at which information can be transmitted
over the channel. To measure the channel capacity, a covert channel is
well suited as the sender and receiver are cooperating. Most side-channel
papers implement and benchmark a covert channel [4, 22, 50, 57, 58, 65,
73, 76, 81, 90, 111, 165, 175, 176, 200, 204, 211, 212, 228, 234, 250, 251, 265,
273, 274, 283]. Covert channels are also used in transient-execution attacks
to transmit the transiently leaked data to the outside world [140, 158].
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Covert channels were also already researched long before the first software-
based side-channel attacks. Lampson [150] was the first to recognize the
difficulty of confining a program on a system with a shared operating
system and shared hardware. This was followed by further research on
covert channels and their mitigation [90, 128, 162, 226, 252]. However,
these works focused on special “secure systems” as, for example, defined by
the Trusted Computer System Evaluation Criteria [44] and not commercial
off-the-shelf systems, which are the target of most recent side-channel
research.

Contention Side Channels. The first covert channels by Lampson
and others [90, 128, 150, 162, 226, 252] exploited contention on a shared
resource, e.g., the hard drive. Apart from these secure systems [44], con-
tention was mainly a concern for the system’s performance. With the
emergence of multiprocessor systems, contention on the shared memory
or last-level cache became a concern [173, 214, 254]. Contention was also
researched in databases [2, 24].

If contention can be focused on a small subset of a system, e.g., execution
ports or schedulers, powerful attacks are possible from the leaking of
encryption keys [1, 4, 22, 58] and remote attacks from JavaScript [57,
218]. Contention on the network has also been shown to leak private
user information [55, 62, 246]. Memory bus contention [273, 274], as well
as HDD contention [155], has been used for covert communication. The
additional contention caused by RowHammer mitigation-induced memory
latency differences has been used for covert communication and website
fingerprinting [29]. PCIe contention has been shown to enable a variety of
attacks [65, 234, 241, 248] if PCIe switches or PCIe platform controller
hubs are used to share a link, which is not generally the case for SSDs. As
a part of this thesis [120] (Chapter 10), we show that contention on SSDs
can be used for covert communication and allows to fingerprint websites
visited by the victim with very high accuracy.

Storage Side Channels. Shared storage has been identified very early
as a potential source for side channels [150]. Karger et al. [128] exploit
the optimizations of hard disks’ arm movements to build a covert channel.
Hard disks were again attacked more recently, first, by Lipinski et al. [155],
who presented a contention-based covert channel with up to 0.1 bit/s.
Biedermann et al. [23] measured the electromagnetic emissions of a hard
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drive using a smartphone to perform operating system and application
fingerprinting. Finally, Guri et al. [80] measured the acoustic emissions
of a hard drive to build a covert channel. Guri et al. [80] highlight that
SSDs mitigate this covert channel as they do not emit noises. Chen et al.
[34] also suggest that SSDs would mitigate certain timing side channels
that are present in HDDs.

Trochatos et al. [250, 251] focused on smart SSDs that include a user-
programmable FPGA to enable near-storage compute [152]. They use them
to build a covert channel between users using the smart SSD consecutively
and between those using it simultaneously. Lui et al. [161] analyze the
(now discontinued) Intel Optane persistent memory for side channels and
reverse engineer the internal cache to develop four new attacks: a covert
channel, a keystroke-timing attack, a fully remote covert channel, and a
note board attack. Gruss et al. [73] exploit the operating system’s page
cache that caches recently accessed storage pages to build a 7 kB/s to
273 kB/s covert channel, an ASLR break on Windows 10, a UI redressing
attack, and a keystroke-timing attack. Jiang et al. [111] exploit the fsync
syscall on the file system that writes dirty data back to storage to build a
20 kbit/s covert channel.

However, even though the storage subsystem has long been known to be
a source of side-channel leakage and research exists on HDDs [23, 80, 128,
155], smart SSDs [250, 251], and Intel Optane persistent memory [161], this
thesis is the first to analyze the side-channel leakage of regular off-the-shelf
SSDs. In our work “Secret Spilling Drive” [120] (Chapter 10), we show
that contention on SSDs can be used for covert communication and allows
to fingerprint websites with very high accuracy.

Cloud Co-Location. In cloud environments, multiple tenants are run-
ning on the same shared hardware. Many of them store confidential data
of themselves or their customers. Therefore, cloud environments have long
been a target of side-channel research. A large body of works studied
attacks [20, 176, 240, 274, 285, 286] but also their mitigation [135, 160,
284]. For most of these attacks to work, the attacker must be co-located
with the victim on the same physical hardware. This motivated a special-
ized branch of research on cloud co-location [94, 95, 166, 217, 289], with
cloud providers constantly eliminating known channels for co-location
detection [95]. Ristenpart et al. [217] were the first to show that targeted
co-location is feasible in the AWS cloud. Inci et al. [95] use the last-level
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cache as a covert channel to detect co-location and mount an attack on
RSA. Makrani et al. [166] massage the resource provisioning systems
with their attack, called Cloak & Co-locate, to get targeted co-location.
Zhao et al. [289] achieve co-location in Google Cloud’s Function-as-a-
Service environment and steal secret ECDSA nonce bits using a cache
side channel [290].

In our work “Not So Secure TSC” [118] (Chapter 11), we show that the
SecureTSC feature of AMD’s confidential computing platform SEV SNP
enables very fast and low-overhead co-location detection.
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4
Conclusion

In this thesis, we presented novel Rowhammer and side-channel attacks.
Motivated by these attacks, we explored how hardware-software co-designs
can be effective and efficient mitigations against software-based fault
attacks. We conclude this thesis with three key insights:

DRAM disturbance attacks like Rowhammer are still not fully understood,
motivating the need for principled mitigations. After more than 10 years,
Rowhammer is still not perfectly mitigated because of an incomplete
understanding of DRAM disturbance effects [74, 144] and insufficient
mitigations [105, 106, 125]. We demonstrated that phenomena like one-
location Rowhammer can exist for years before being fully understood [119]
(Chapter 7). We also extended Rowhammer research to new hardware
and showed that SSDs using the main memory can also hammer it [115]
(Chapter 8). It is likely that future research will uncover further previ-
ously unknown links between existing DRAM disturbance effects. Future
research must also continuously assess the Rowhammer risk in new threat
models that include peripheral hardware similar to SSDs. Every PCIe
revision doubles the throughput, doubling the potential hammer rate of
DMA accesses to the main memory. The same danger comes from novel
hardware accelerators like neural processing units that access the DRAM
directly. When compute-in-memory architectures become widespread, their
susceptibility to Rowhammer and also their potential to be used in an
attack will be a relevant research question [28, 182, 282]. With a con-
tinuously increasing understanding of DRAM disturbance attacks and
novel threat models, mitigations focusing on the currently existing attacks
are unlikely to guarantee sustained security. Only principled mitigations
that can guarantee data integrity regardless of the specific attack and
simultaneously provide strong correction capabilities can sustainedly solve
the problem [117] (Chapter 5).
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Principled mitigations can be inexpensive and even increase efficiency. To
prevent hardware faults under all circumstances, manufacturers add guard-
bands to properties like timings and supply voltages. By employing princi-
pled mitigations against hardware faults, the guardbands can be reduced
as they are not longer solely responsible for preventing faults. The guaran-
tee to detect all data corruption in the DRAM of CSI:Rowhammer [117]
(Chapter 5) could also be used to optimize the refresh rate of DRAM
dynamically. In the future, the memory controller could reduce the re-
fresh rate to find a sweet spot between the energy “wasted” on bit flip
correction and the energy savings from the reduced refresh rate. As the
reduced refresh rate also increases the performance of the DRAM, this
could lead to a faster and more energy-efficient system. With increasing
hardware-software system complexity, it is likely that future research will
increase the role of software in the handling and correction of bit flips,
for example, by performing bit flip correction in user space or by taking
knowledge about the DRAM’s structure and properties into account to
reduce the search space significantly. In our work SUIT [116] (Chapter 6),
we showed that the CPU voltage can be significantly decreased if the CPU
guarantees that potentially faulting instructions are not executed with
this lower voltage. Overall, SUIT can decrease the power consumption
of the CPU while even increasing the system’s performance. To improve
CPU efficiency further, with more fine-grained voltage control based on
more factors than just specific instructions, we need further research to
understand the CPU’s susceptibility to faults and crashes in low-voltage
scenarios. Additionally, the operating system could also interact with the
CPU to inform the CPU about required voltage levels in the near future.
This could significantly reduce the overhead from CPU voltage change
delays, similar to cache prefetchers.

For new hardware, known classes of problems, like side channels, are often
not considered in the design phase, leaving the new hardware vulnerable.
Even though SSDs are widely used in almost all computers, they have not
yet been studied as a source of side channels. We close this research gap and
perform the first side-channel analyses on modern commodity off-the-shelf
SSDs, presenting two novel software-based timing side-channel attacks on
SSDs. The first attack is a cache timing side channel that provides leakage
with high spatial resolution in combination with a software interface [121]
(Chapter 9). The second side channel leaks SSD contention with high
temporal resolution [120] (Chapter 10). We performed a large study of
SSDs’ susceptibility to this contention side channel and showed that all
tested SSDs were vulnerable. These works show that single components
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like SSDs can be the source of multiple side channels, and it is likely that
future work will uncover many more, given their complexity and wide use.
Similar to potential DRAM disturbance attacks, this also extends to other
hardware components where research is sparse, either because they were
newly introduced or received little attention from the academic community
until now. While storage contention has already been identified as a source
for side channels for a very long time [150], we are the first that showed
that it also impacts high performance NVMe SSDs. The high performance
actually enables more fine-grained attacks, such as fingerprinting the
subtle signals from websites being opened on the machine with very high
accuracy. As the performance is continuously increasing, it is likely that
these attacks will get worse in the future. In our work on AMD’s Secure
TSC [118] (Chapter 11), we showed another example of a new feature that
was introduced without taking side channels into account. The Secure TSC
timer allows an attacker to detect the co-location of virtual machine guests.
Without a principled approach to consider known classes of problems,
in particular, side-channel leakage will continue to be introduced in new
hardware components and features.
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