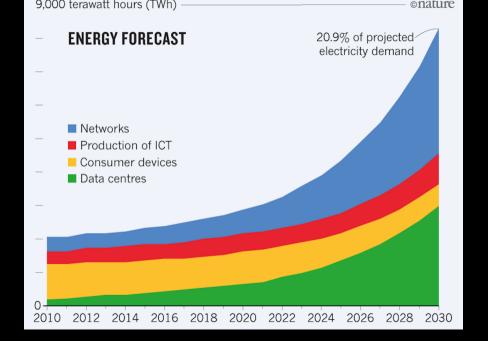
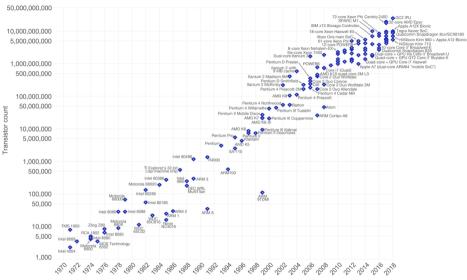
SUIT

Secure Undervolting with Instruction Traps


Daniel Gruss, Jonas Juffinger

Graz University of Technology

RSTCON Savannah, GA 2024

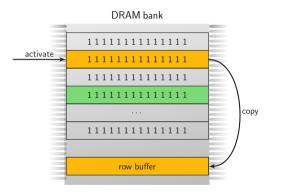

0.09%

0.40%

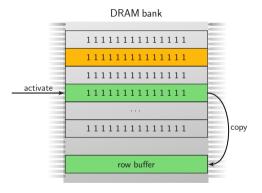
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

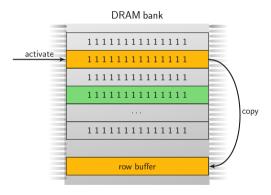
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.


Why is Rowhammer still not solved?

DRAM bank 100 _ 111111111111111 1111111111111111 1111111111111111 1111111111111111 1111111111111111 row buffer

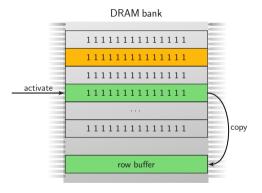

$\mathbf{I} \rightarrow \mathbf{I}$

$\mathbf{I} \rightarrow \mathbf{I}$



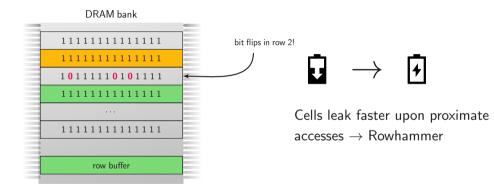
$\mathbf{J} \rightarrow \mathbf{J}$

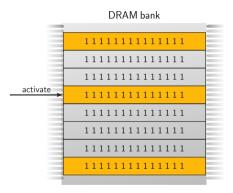
Cells leak faster upon proximate accesses \rightarrow Rowhammer



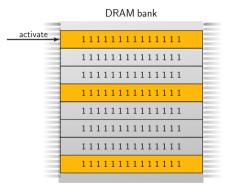
$\mathbf{I} \rightarrow \mathbf{I}$

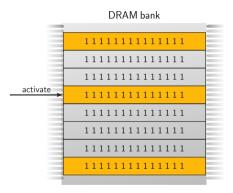
Cells leak faster upon proximate accesses \rightarrow Rowhammer



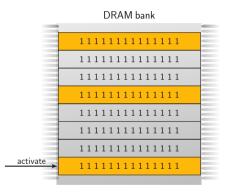

$\mathbf{J} \rightarrow \mathbf{J}$

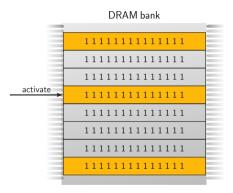
Cells leak faster upon proximate accesses \rightarrow Rowhammer



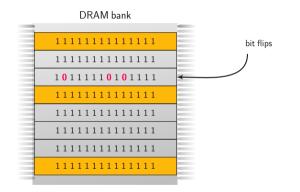


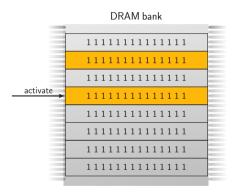
#1 - Single-sided hammering



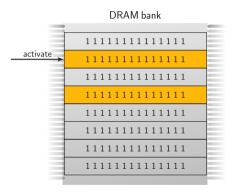


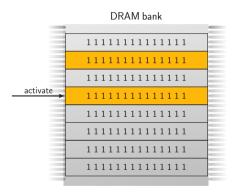
#1 - Single-sided hammering

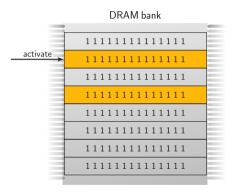


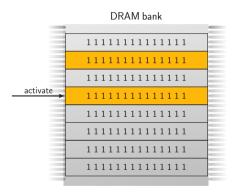


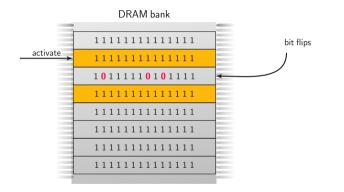
#1 - Single-sided hammering



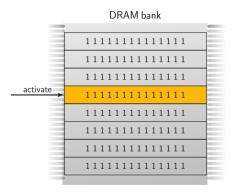


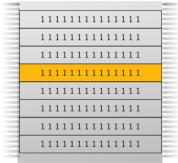


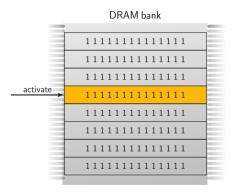




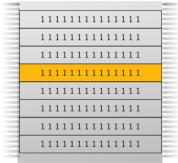
#2 - Double-sided hammering

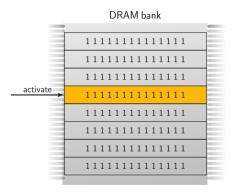




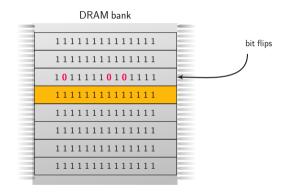


DRAM bank





DRAM bank



#3 - One-location hammering

Common misunderstandings...

Common misunderstandings...

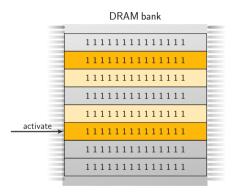
... create bad incentives.

- ... create bad incentives.
 - A "bit" more reliability

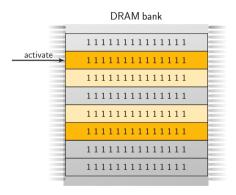
- ... create bad incentives.
 - A "bit" more reliability
 - Why not ECC everywhere?

- ... create bad incentives.
 - A "bit" more reliability
 - Why not ECC everywhere?
 - $\rightarrow\,$ What incentives does it create?

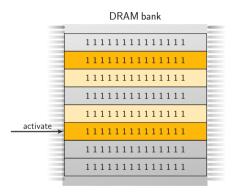
- ... create bad incentives.
 - A "bit" more reliability
 - Why not ECC everywhere?
 - $\rightarrow\,$ What incentives does it create?

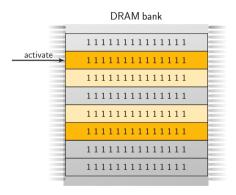

- ... create bad incentives.
 - A "bit" more reliability
 - Why not ECC everywhere?
- $\rightarrow\,$ What incentives does it create?

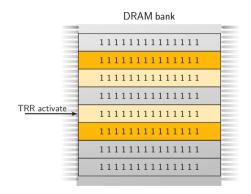
Mobile vendors since 2018: let's add ECC by default

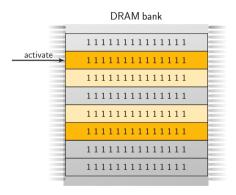


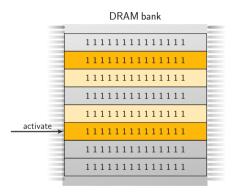
WHY SHOULDN'T I OPTIMIZE

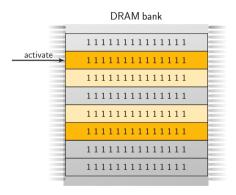


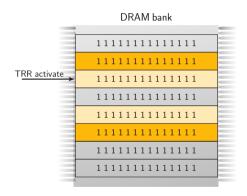


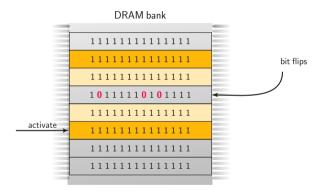


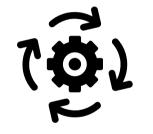


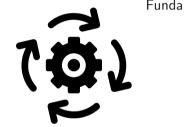


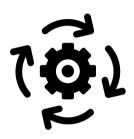


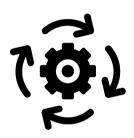


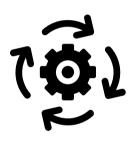


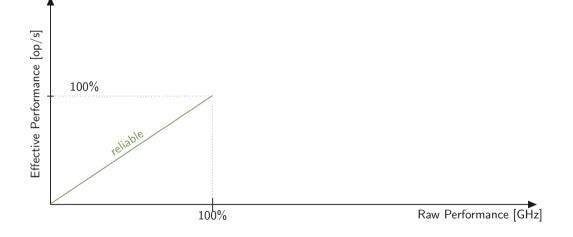


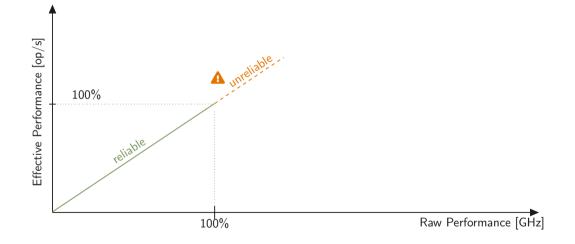


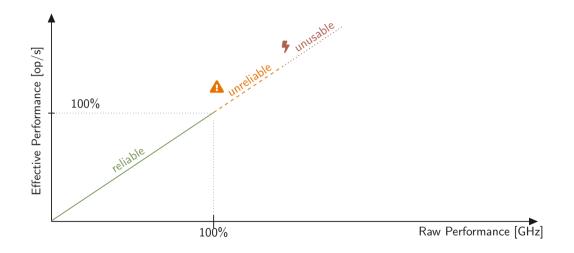


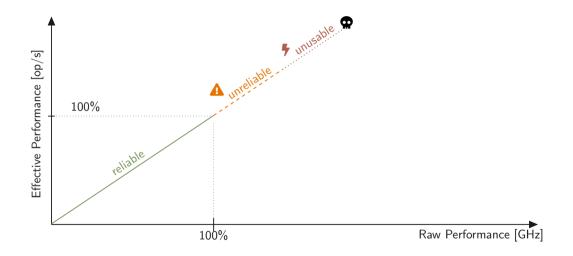

• we assume what is still reliable

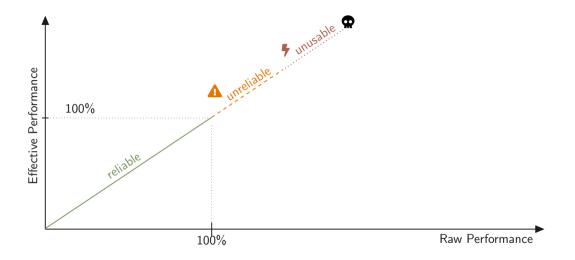

- we assume what is still reliable
- we don't change the game at all

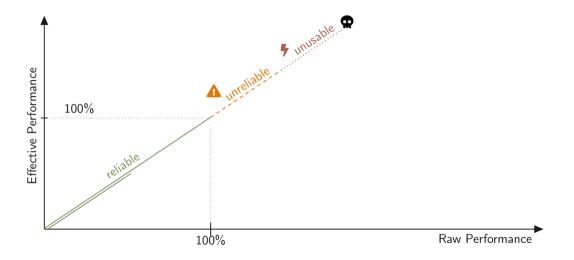


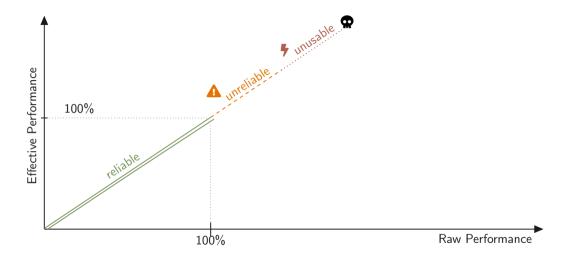

- we assume what is still reliable
- we don't change the game at all
- $\rightarrow\,$ one flip too much is still all what it needs

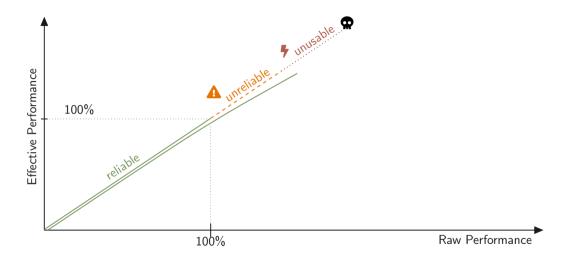


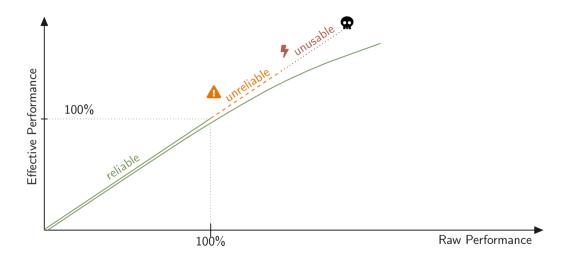


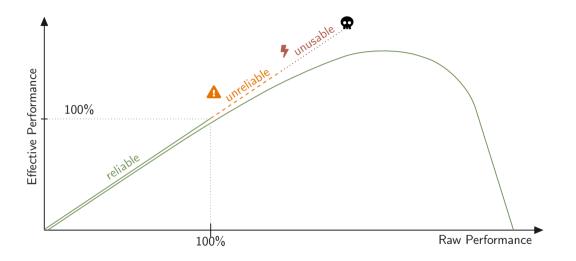

- we assume what is still reliable
- we don't change the game at all
- $\rightarrow\,$ one flip too much is still all what it needs
- attacker does not care whether that "one flip too much" is with or without ECC

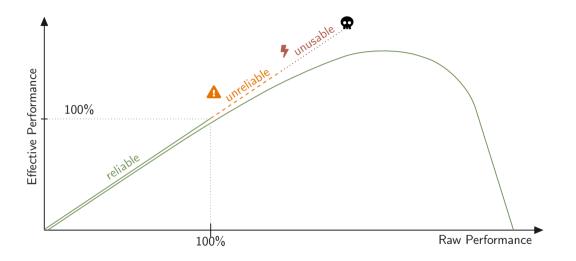


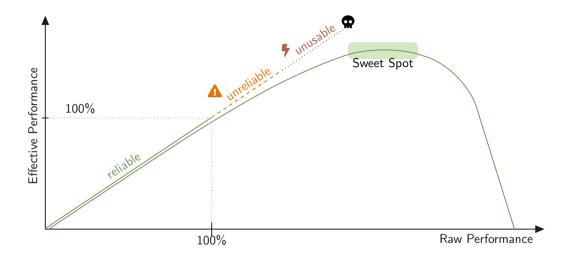












Security for Efficiency?

New Solution

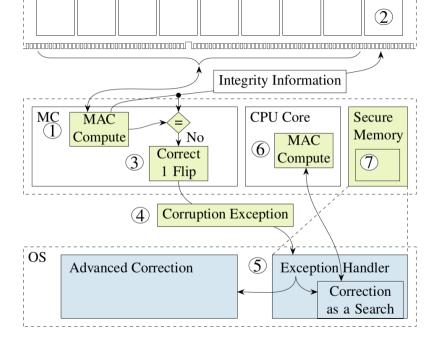
• Increasing DRAM energy efficiency and performance increases bit flips

- Increasing DRAM energy efficiency and performance increases bit flips
- Bit flips worsen system security

- Increasing DRAM energy efficiency and performance increases bit flips
- Bit flips worsen system security
- If bit flips would only degrade performance but no security

- Increasing DRAM energy efficiency and performance increases bit flips
- Bit flips worsen system security
- If bit flips would only degrade performance but no security
- We could optimize for the **sweet spot** of energy efficiency and performance without security implications

• Cryptographic MAC



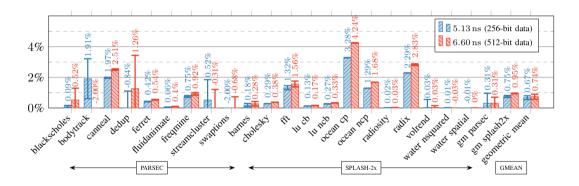
- Cryptographic MAC
- Detect any number of bit flips

- Cryptographic MAC
- Detect any number of bit flips
- Correction by brute-force search for correct data

# Errors	# MAC Comp.	Avg Duration
1	17	11 ns
2	771	3.68 µs
3	33 800	124 µs
4	$1.51 imes10^{6}$	6.65 ms
5	$6.91 imes10^7$	261 ms
6	$3.07 imes10^9$	12.8 s
7	$1.21 imes 10^{11}$	9.11 min
8	5.72×10^{12}	6.11 h

• Silent data corruption less than once per 10⁹ billion years

- Silent data corruption less than once per 10⁹ billion years
- Second preimage after hammering for one year: $9.75 \cdot 10^{-5}$ %



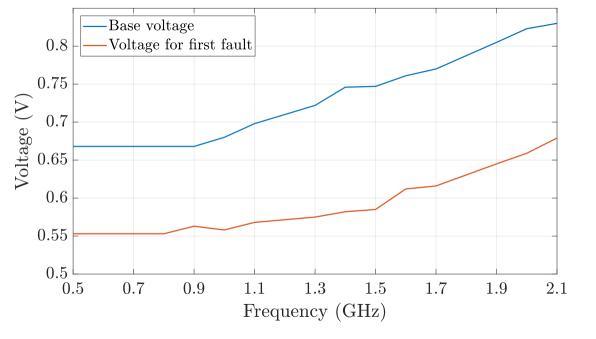
- Silent data corruption less than once per 10⁹ billion years
- Second preimage after hammering for one year: $9.75\cdot 10^{-5}\,\%$
- Erroneous correction of 8-bit errors: 0.0161 %

On average less than $0.75\,\%$ overhead

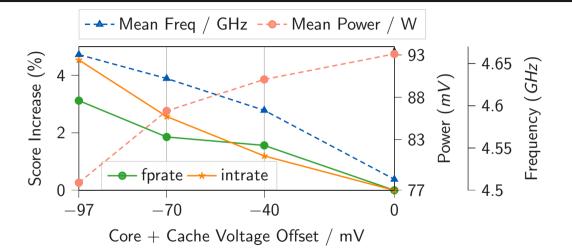
Overclocking

Undervolting

-	· ·								Monitoring 🔍	Settings 🔞 Help.
System Information	Core								Core Default	
Manual Tuning	Reference Clock	ū 🐵 103,	2258 MHz						Reference Clock 101,0526 MH	Hz 103,2258 MHz
All Controls Core Graphics	Turbo Boost Short Power Max Enable ①			Turbo Boost Short Pa	wer Max		© 12	Max N	ax Non Turbo Boost Ratio 34 x on-Turbo Boost CPU Sp 3,436 GHz « Turbo Boost CPU Speed 4,042 GHz 1 Active Core 40 x	34 x 3,510 GHz 4,335 GHz 42 x
Stress Test Profiles	Disable Enable Turbo Boost Power Max	© ⊗ 1	050.000 W	Turbo Boost Power Ti	ime Window		0 0,00097656	i Seconds	2 Active Cores 40 x 3 Active Cores 39 x 4 Active Cores 38 x	42 x 42 x 42 x 42 x
ronies	Core Current Limit		300,000 A	Additional Turbo Vol	tage		© 0,0		Turbo Boost Power Max 1000,000 W o Boost Short Power Max 1200,000 W Boost Short Power Max. Enable	1200,000 W Enable
	Multipliers								Boost Power Time Wind 0,00097656 Core Current Limit 300,000 A Additional Turbo Voltage 0,00000 mV	300,000 A 0,00000 mV
	1 Active Core							Brock	Graphics Default ssor Graphics Current Li 300,000 A	Proposed A 300,000 A
									sor graphics current cl 300,000 A	300,000 A
	4 Active Cores) 4 42 x ▶ ③								
		4 Active Cores								
	Graphics	Default 38 x Active 38 x Proposed 42 x								
	Processor Graphics Current Limit	Limits the maximum ratio that the processor can use while four cores are active.	300,000 A							
								A	Discard	▲ Save to Profile
									Force Reboot	
CPU Core Temperature										
					CPU Utilization 3 %	Memory Utilization 2708 MB	CPU Core Temperature 36 °C	CPU Throttling 0%	Processor Frequency 3,54 GHz	
CPU Utilization 3 %										
Processor Frequency 3,54 GHz	hannahan				354 MHz		16 W	10 W		
Memory Utilization					Reference Clock Frequency 101,0 MHz	CPU Core Temperature 1 36 °C	CPU Core Temperature : 36 °C	2 CPU Core Temperatu 36 °C	ure 3 CPU Core Temperature 4	
CPU Total TDP 15 W	11		5	Minutes ~	Memory Frequency 1617 MHz					Compute ase




```
uint64_t multiplier = 0x1122334455667788;
uint64_t correct = 0xdeadbeef * multiplier;
uint64_t var = 0xdeadbeef * multiplier;
while (var == correct)
{
 var = 0xdeadbeef * multiplier;
}
```


```
uint64_t flipped_bits = var ^ correct;
```


Can we make this secure?

Performance Improvement and Power Savings (as a graph)

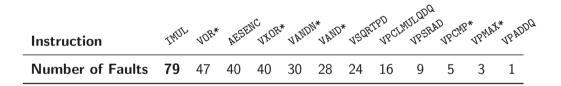


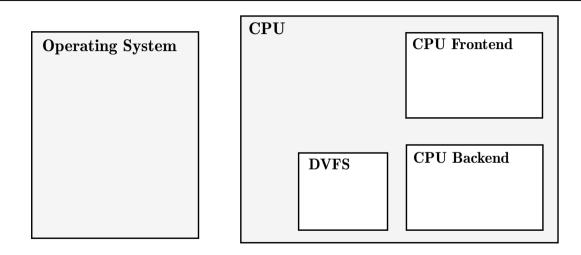
	Т	٦.	
-			

CPU	V_{off}	Score	Power	Freq.	Energy Eff.
i5-1035G1	—70 mV	+6.0 %	-0.1 %	+8.5%	+6.1 %
	—97 mV	+7.9 %	-0.5 %	+12%	+8.4 %
i9-9900K	—70 mV	+2.2 %	-7.2 %	+2.6 %	+10%
	—97 mV	+3.8 %	-16 %	+3.3 %	+23%
7700X*	−70 mV	+1.4%	-9.8%	+1.8%	+12 %
	−97 mV	+1.9%	-15%	+1.8%	+20 %

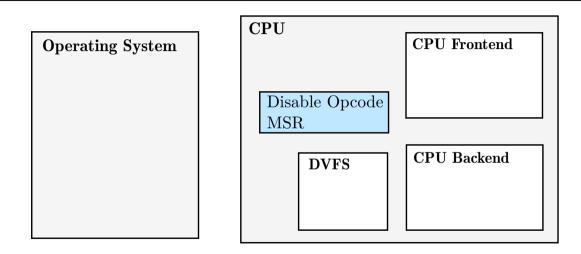
Problem: Reliability Issues

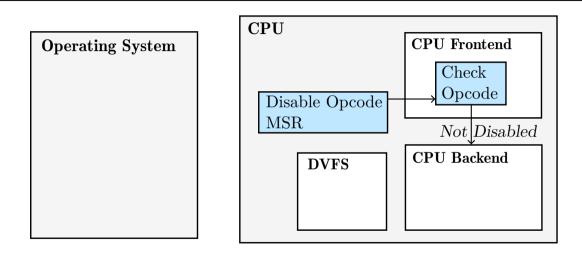
Problem: Security Issues

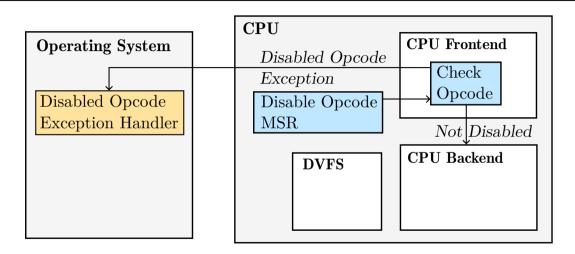


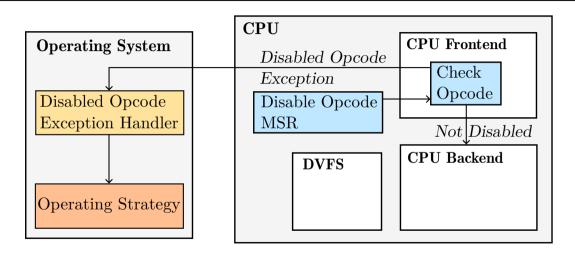


Up to a 150 mV variation in instruction voltage requirement. Conservative Voltage Instr. Var. Aging T. ...

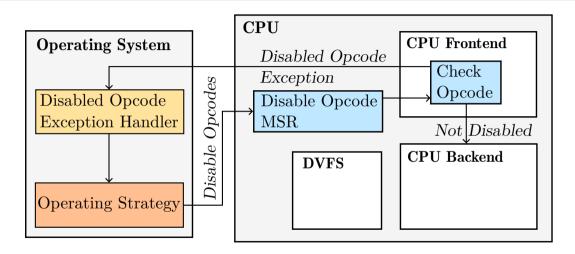


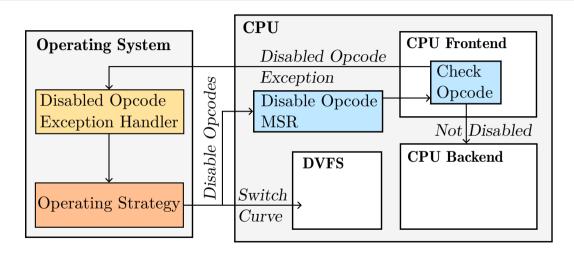


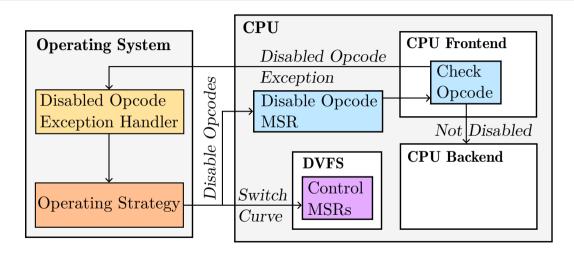


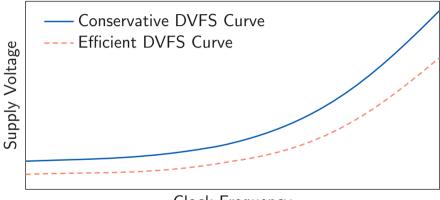


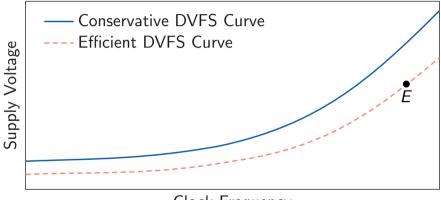
Operating System	CPU Disabled Opcode	
	Exception Check Disable Opcode Opcode MSR Not Disabled DVFS CPU Backend	

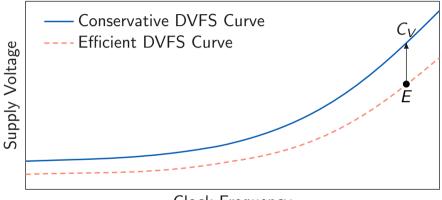


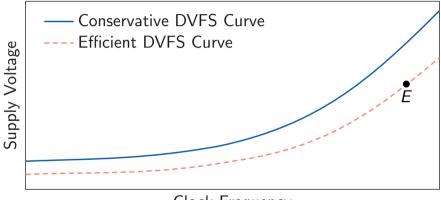


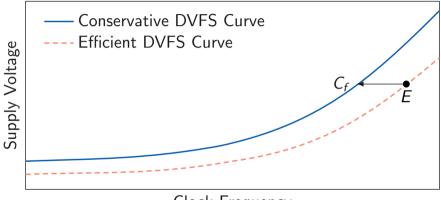


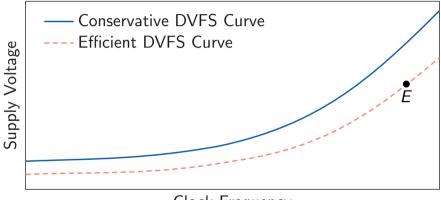


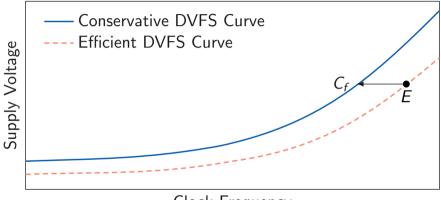


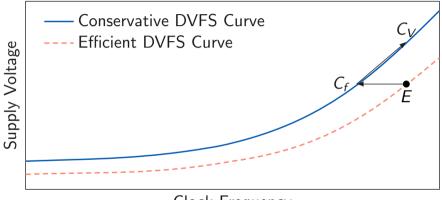


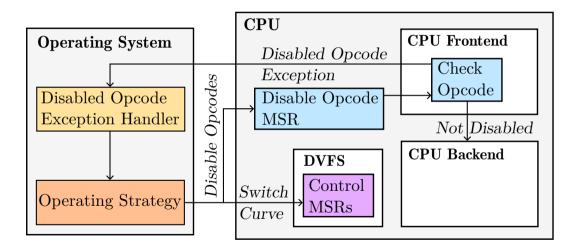


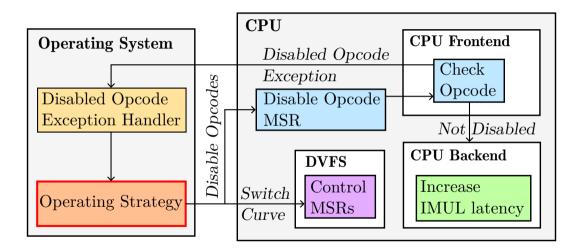


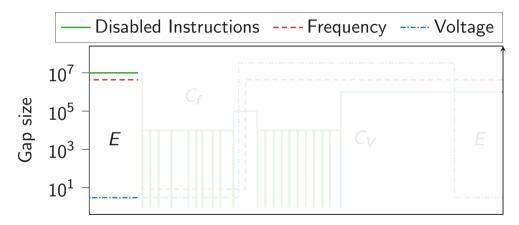


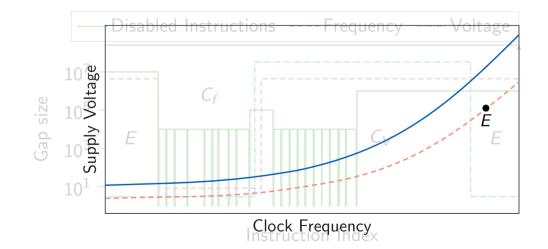


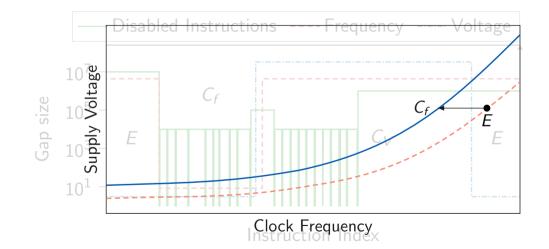




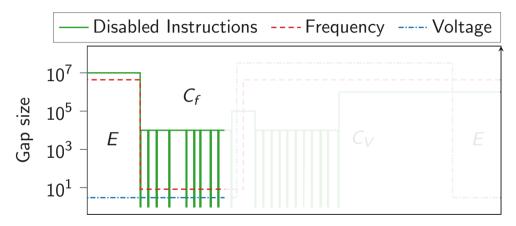


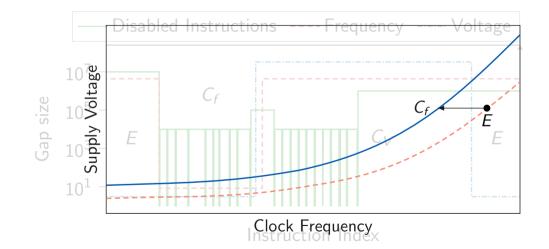


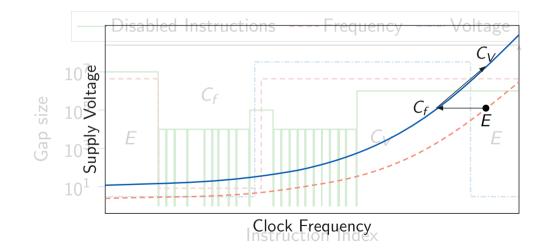




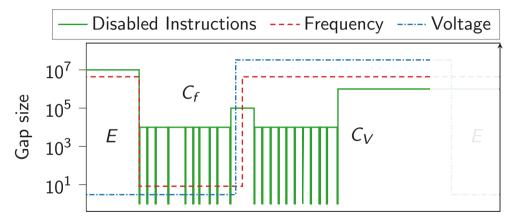
Instruction Index

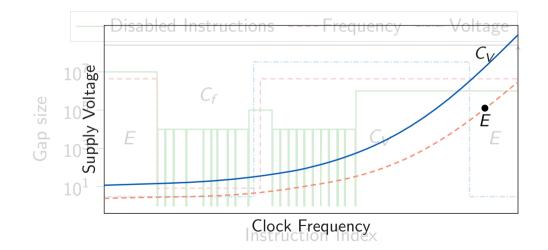


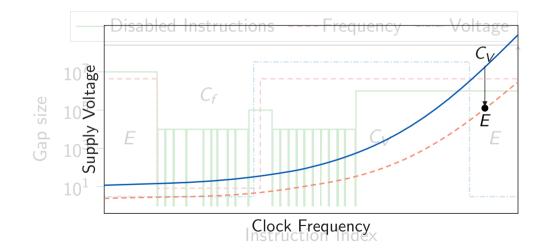




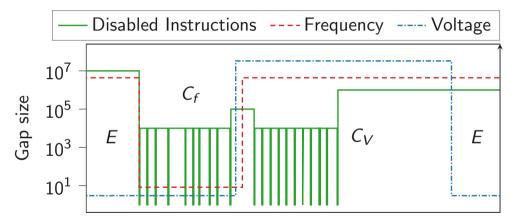
Instruction Index

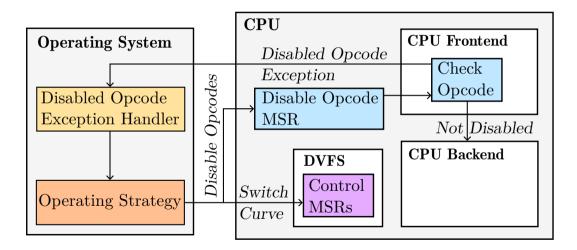


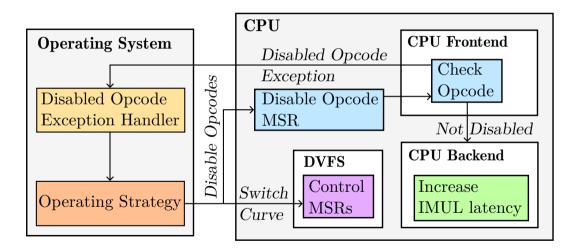




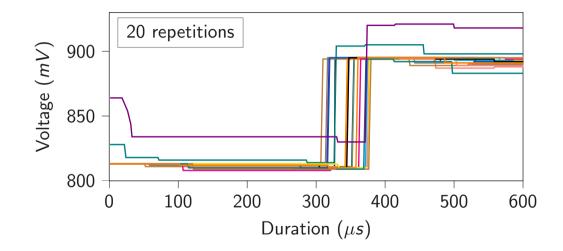
Instruction Index

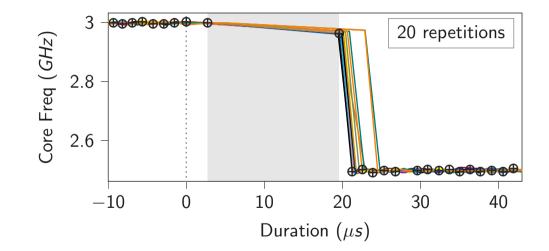




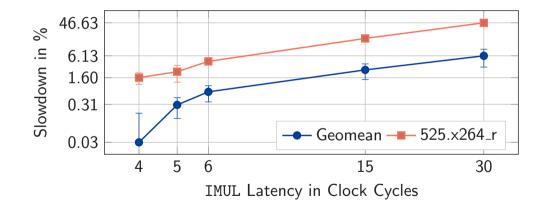


Instruction Index

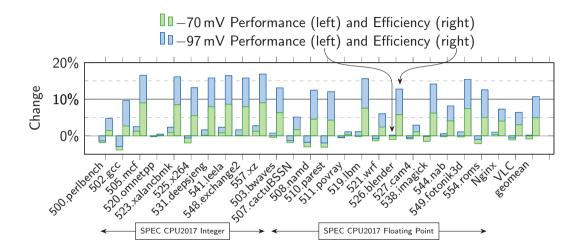




Voltage Change Delay



	Т	٦.	
-			


CPU	V_{off}	Score	Power	Freq.	Energy Eff.
i5-1035G1	—70 mV	+6.0 %	-0.1 %	+8.5%	+6.1 %
	—97 mV	+7.9 %	-0.5 %	+12%	+8.4 %
i9-9900K	—70 mV	+2.2 %	-7.2 %	+2.6 %	+10%
	—97 mV	+3.8 %	-16 %	+3.3 %	+23%
7700X*	−70 mV	+1.4%	-9.8%	+1.8%	+12 %
	−97 mV	+1.9%	-15%	+1.8%	+20 %

SPEC CPU2017 Results

More Results

70 mV Undervolt						97 mV Undervolt								
CPU	cores		SPECgmez	SPECmedi	^{an} 525.×264	SPECnosli	Nginx MD	VLC	SPECgmei	SPECmedi	^{an} 525.×264	SPECnosli	Nginx MD	VLC
\mathcal{A}_1	fV	Pwr Perf. Eff.	-5.62 % -0.25 % +5.70 %	-7.05 % -1.31 % +6.18 %		+2.97%	-3.55 % +0.50 % +4.20 %	-3.88 % -0.39 % +3.63 %	-9.75 % +0.80 % +11.7 %	-10.9% +1.35% +13.7%	0.06 %		-5.81 % +1.20 % +7.44 %	
\mathcal{A}_4	fV	Pwr Perf. Eff.	-4.62 % -3.93 % +0.72 %	-0.11 % -0.04 % 0.07 %	-7.87 %	-7.41 % +1.82 % +9.97 %	-0.26%	$-1.00\% \\ -0.58\% \\ +0.43\%$	-8.87 % -3.58 % +5.80 %	-8.67 % -3.47 % +5.70 %	-7.25 %		$-1.57 \% \\ -0.14 \% \\ +1.45 \%$	
\mathcal{A}_{∞}	е	Pwr Perf. Eff.	$-7.50\% \\ -41.6\% \\ -36.9\%$	$-7.58\% \\ -11.8\% \\ -4.51\%$	+6.16%		-7.24 % -98.5 % -98.3 %	-91.9%	$-12.3\%\ -41.9\%\ -33.7\%$		+6.10%		$^{-12.1\%}_{-98.5\%}_{-98.3\%}$	-91.9%
	f	Pwr Perf. Eff.	-8.14 % -7.82 % +0.34 %	-7.80 % -7.83 % -0.03 %	-9.25 %	-9.13 % +0.42 % +10.5 %	-2.50%	-4.43 % -2.52 % +2.00 %	$-11.5 \% \\ -10.3 \% \\ +1.40 \%$	$-10.8\%\ -10.8\%\ 0.05\%$	-12.2%	+0.58%	-6.71 % -2.30 % +4.73 %	-2.33 %
\mathcal{B}_{∞}	е	Pwr Perf. Eff.	-9.18% -26.4% -19.0%	-8.02% -5.12% +3.15%	-10.8% +14.5% +28.3%	-0.54%	-9.79 % -95.7 % -95.3 %		$-14.4\% \\ -26.1\% \\ -13.7\%$	-13.3 % -5.25 % +9.26 %	+18.5%	0.01 %	$-14.9\% \\ -95.7\% \\ -95.0\%$	-79.8%
\mathcal{C}_{∞}	fV	Pwr Perf. Eff.		-7.05% -1.92% +5.53%	-1.92%	+3.53 %	-3.56 % +0.33 % +4.04 %	-1.12%	-9.78 % +0.19 % +11.0 %		-0.55%	+3.79 %	-5.83 % +1.03 % +7.28 %	-0.57%

-	2.51 /0	0.50 /0	0.5570	10.00 /0	1.5570	0.00 /0	J. 1 J /0	1.20 /0	10.10 /
%	+10.8%	+4.20 %	+3.63%	+11.7 %	+13.7%	+13.8%	+21.4%	+7.44%	+6.92%
%	-7.41%	-0.97%	-1.00%	-8.87%	-8.67%	-13.1%	-16.2%	-1.57 %	_ <u>1.57</u> /(
%	+1.82%	-0.26%	-0.58%	-3.58%	-3.47%	-7.25%	+1.84%	-0.14%	-0.53%
%	+9.97%	+0.72%	+0.43%	+5.80%	+5.70 %	+6.70%	+21.6%	+1.45%	+1.05%
%	-7.50 %	-7.24 %	-7.24 %	-12.3%	-12.4 %	-10.3%	-16.6%	-12.1 %	-12.1%
%	+1.42%	-98.5%	-91.9%	-41.9%	-11.9%	+6.10%	+1.42%	-98.5%	-91.9%
%	+9.63%	-98.3%	-91.2%	-33.7 %	+0.58%	+18.3%	+21.6 %	-98.3%	-90.7%
%	-9.13%	-4.42%	-4.43%	-11.5%	-10.8%	-10.8%	-14.1%	-6.71 %	-6.73%
%	+0.42%	-2.50%	-2.52%	-10.3%	-10.8%	-12.2%	+0.58%	-2.30%	-2.33%
%	+10.5%	+2.01%	+2.00%	+1.40 %	0.05%	-1.57%	+17.1%	+4.73%	+4.72%
%	-9.18%	-9.79%	-9.79%	-14.4%	-13.3%	-15.9%	-14.4%	-14.9%	-14.9%
%	-0.54%	-95.7%	-79.8%	-26.1%	-5.25%	+18.5%	0.01%	-95.7%	-79.8%
%	+9.51%	-95.3%	-77.6%	-13.7%	+9.26%	+40.9%	+16.8%	-95.0%	-76.2%
%	-6.12%	-3.56%	-4.03 %	-9.78%	-11.2%	-12.1%	-14.1%	-5.83%	-6.55%
%	+3.53%	+0.33%	-1.12%	+0.19 %	+0.19%	-0.55%	+3.79%	+1.03%	-0.57%
%	+10.3%	+4.04%	+3.03%	+11.0 %	+12.8%	+13.1%	+20.8%	+7.28%	+6.40%

0	2.51 /0	0.50 /0	0.5570	10.00 /0	11.55 /0	0.00 /0	J. 75 /0	11.20 /0	10.10 /0
%	+10.8%	+4.20 %	+3.63%	+11.7 %	+13.7%	+13.8%	+21.4 %	+7.44 %	+6.92%
%	-7.41% +1.82%	-0.97 % -0.26 %	$-1.00\%\-0.58\%$	-8.87% -3.58%	-8.67 % -3.47 %	$^{-13.1\%}_{-7.25\%}$	-16.2% +1.84%	$-1.57\%\-0.14\%$	-0.53%
%	+9.97 %	+0.72 %	+0.43 %	+5.80 %	+5.70%	+6.70%	+21.6%	+1.45%	+1.05%
% % %	-7.50 % +1.42 % +9.63 %	-7.24 % -98.5 % -98.3 %	-7.24% -91.9% -91.2%	-12.3% -41.9% -33.7%	-12.4% -11.9% +0.58%	-10.3% +6.10% +18.3%	-16.6% +1.42% +21.6%	-12.1% -98.5% -98.3%	-12.1% -91.9% -90.7%
% % %	-9.13% +0.42% +10.5%	-4.42 % -2.50 % +2.01 %	-4.43 % -2.52 % +2.00 %	$-11.5\% \\ -10.3\% \\ +1.40\%$	$-10.8\% \\ -10.8\% \\ 0.05\%$	$-10.8\% \\ -12.2\% \\ -1.57\%$	-14.1% +0.58% +17.1%	-6.71 % -2.30 % +4.73 %	-6.73 % -2.33 % +4.72 %
% % %	-9.18% -0.54% +9.51%	-9.79 % -95.7 % -95.3 %	-9.79 % -79.8 % -77.6 %	-14.4% -26.1% -13.7%	-13.3% -5.25% +9.26%	-15.9% +18.5% +40.9%	-14.4% 0.01 % +16.8 %	-14.9% -95.7% -95.0%	-14.9 % -79.8 % -76.2 %
% % %	-6.12% +3.53% +10.3%	-3.56 % +0.33 % +4.04 %	-4.03 % -1.12 % +3.03 %	$-9.78\% \\ +0.19\% \\ +11.0\%$	-11.2% +0.19% +12.8%	$-12.1\% \\ -0.55\% \\ +13.1\%$	-14.1 % +3.79 % +20.8 %	-5.83 % +1.03 % +7.28 %	-6.55 % -0.57 % +6.40 %

Conclusion

• Decade-old problems like Rowhammer can be solved with principled security

- Decade-old problems like Rowhammer can be solved with principled security
- Adding security can increase efficiency

- Decade-old problems like Rowhammer can be solved with principled security
- Adding security can increase efficiency
- New and unexplored area that needs a lot more research

This research was made possible by generous funding from:

European Research Council (ERC project FSSec 101076409), FWF SFB project SPyCoDe F8504, NSF grants 1813004, 2217020, 2316201, and research grants and gifts from Red Hat, Google, Intel, and Cisco. This work has benefitted from Dagstuhl Seminar 22341 (PEACHES). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding parties.

SUIT

Secure Undervolting with Instruction Traps

Daniel Gruss, Jonas Juffinger

Graz University of Technology

RSTCON Savannah, GA 2024